Testing Stationarity and Change Point Detection in Reinforcement
Learning
- URL: http://arxiv.org/abs/2203.01707v3
- Date: Fri, 8 Mar 2024 01:00:47 GMT
- Title: Testing Stationarity and Change Point Detection in Reinforcement
Learning
- Authors: Mengbing Li, Chengchun Shi, Zhenke Wu and Piotr Fryzlewicz
- Abstract summary: We develop a consistent procedure to test the nonstationarity of the optimal Q-function based on pre-collected historical data.
We further develop a sequential change point detection method that can be naturally coupled with existing state-of-the-art RL methods for policy optimization in nonstationary environments.
- Score: 10.343546104340962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider offline reinforcement learning (RL) methods in possibly
nonstationary environments. Many existing RL algorithms in the literature rely
on the stationarity assumption that requires the system transition and the
reward function to be constant over time. However, the stationarity assumption
is restrictive in practice and is likely to be violated in a number of
applications, including traffic signal control, robotics and mobile health. In
this paper, we develop a consistent procedure to test the nonstationarity of
the optimal Q-function based on pre-collected historical data, without
additional online data collection. Based on the proposed test, we further
develop a sequential change point detection method that can be naturally
coupled with existing state-of-the-art RL methods for policy optimization in
nonstationary environments. The usefulness of our method is illustrated by
theoretical results, simulation studies, and a real data example from the 2018
Intern Health Study. A Python implementation of the proposed procedure is
available at https://github.com/limengbinggz/CUSUM-RL.
Related papers
- Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Environment Transformer and Policy Optimization for Model-Based Offline
Reinforcement Learning [25.684201757101267]
We propose an uncertainty-aware sequence modeling architecture called Environment Transformer.
Benefiting from the accurate modeling of the transition dynamics and reward function, Environment Transformer can be combined with arbitrary planning, dynamics programming, or policy optimization algorithms for offline RL.
arXiv Detail & Related papers (2023-03-07T11:26:09Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Model Selection for Offline Reinforcement Learning: Practical
Considerations for Healthcare Settings [13.376364233897528]
Reinforcement learning can be used to learn treatment policies and aid decision making in healthcare.
A standard validation pipeline for model selection requires running a learned policy in the actual environment.
Our work serves as a practical guide for offline RL model selection and can help RL practitioners select policies using real-world datasets.
arXiv Detail & Related papers (2021-07-23T02:41:51Z) - Fast and Robust Online Inference with Stochastic Gradient Descent via
Random Scaling [0.9806910643086042]
We develop a new method of online inference for a vector of parameters estimated by the Polyak-Rtupper averaging procedure of gradient descent algorithms.
Our approach is fully operational with online data and is rigorously underpinned by a functional central limit theorem.
arXiv Detail & Related papers (2021-06-06T15:38:37Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
We introduce an algorithm that efficiently learns policies in non-stationary environments.
It analyzes a possibly infinite stream of data and computes, in real-time, high-confidence change-point detection statistics.
We show that (i) this algorithm minimizes the delay until unforeseen changes to a context are detected, thereby allowing for rapid responses.
arXiv Detail & Related papers (2021-05-20T01:57:52Z) - Policy Gradient for Continuing Tasks in Non-stationary Markov Decision
Processes [112.38662246621969]
Reinforcement learning considers the problem of finding policies that maximize an expected cumulative reward in a Markov decision process with unknown transition probabilities.
We compute unbiased navigation gradients of the value function which we use as ascent directions to update the policy.
A major drawback of policy gradient-type algorithms is that they are limited to episodic tasks unless stationarity assumptions are imposed.
arXiv Detail & Related papers (2020-10-16T15:15:42Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
Consider learning a policy purely on the basis of demonstrated behavior -- that is, with no access to reinforcement signals, no knowledge of transition dynamics, and no further interaction with the environment.
One solution is simply to retrofit existing algorithms for apprenticeship learning to work in the offline setting.
But such an approach leans heavily on off-policy evaluation or offline model estimation, and can be indirect and inefficient.
We argue that a good solution should be able to explicitly parameterize a policy, implicitly learn from rollout dynamics, and operate in an entirely offline fashion.
arXiv Detail & Related papers (2020-06-25T03:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.