Mixed Reality Depth Contour Occlusion Using Binocular Similarity
Matching and Three-dimensional Contour Optimisation
- URL: http://arxiv.org/abs/2203.02300v1
- Date: Fri, 4 Mar 2022 13:16:40 GMT
- Title: Mixed Reality Depth Contour Occlusion Using Binocular Similarity
Matching and Three-dimensional Contour Optimisation
- Authors: Naye Ji, Fan Zhang, Haoxiang Zhang, Youbing Zhao, Dingguo Yu
- Abstract summary: Mixed reality applications often require virtual objects that are partly occluded by real objects.
Previous research and commercial products have limitations in terms of performance and efficiency.
- Score: 3.9692358105634384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixed reality applications often require virtual objects that are partly
occluded by real objects. However, previous research and commercial products
have limitations in terms of performance and efficiency. To address these
challenges, we propose a novel depth contour occlusion (DCO) algorithm. The
proposed method is based on the sensitivity of contour occlusion and a
binocular stereoscopic vision device. In this method, a depth contour map is
combined with a sparse depth map obtained from a two-stage adaptive filter area
stereo matching algorithm and the depth contour information of the objects
extracted by a digital image stabilisation optical flow method. We also propose
a quadratic optimisation model with three constraints to generate an accurate
dense map of the depth contour for high-quality real-virtual occlusion. The
whole process is accelerated by GPU. To evaluate the effectiveness of the
algorithm, we demonstrate a time con-sumption statistical analysis for each
stage of the DCO algorithm execution. To verify the relia-bility of the
real-virtual occlusion effect, we conduct an experimental analysis on
single-sided, enclosed, and complex occlusions; subsequently, we compare it
with the occlusion method without quadratic optimisation. With our GPU
implementation for real-time DCO, the evaluation indicates that applying the
presented DCO algorithm can enhance the real-time performance and the visual
quality of real-virtual occlusion.
Related papers
- Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
Conventional geometry-based SLAM systems lack dense 3D reconstruction capabilities.
We propose a real-time RGB-D SLAM system that incorporates a novel view synthesis technique, 3D Gaussian Splatting.
arXiv Detail & Related papers (2024-08-10T21:23:08Z) - SD-MVS: Segmentation-Driven Deformation Multi-View Stereo with Spherical
Refinement and EM optimization [6.886220026399106]
We introduce Multi-View Stereo (SD-MVS) to tackle challenges in 3D reconstruction of textureless areas.
We are the first to adopt the Segment Anything Model (SAM) to distinguish semantic instances in scenes.
We propose a unique refinement strategy that combines spherical coordinates and gradient descent on normals and pixelwise search interval on depths.
arXiv Detail & Related papers (2024-01-12T05:25:57Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object
Detection [51.153003057515754]
OPA-3D is a single-stage, end-to-end, Occlusion-Aware Pixel-Wise Aggregation network.
It jointly estimates dense scene depth with depth-bounding box residuals and object bounding boxes.
It outperforms state-of-the-art methods on the main Car category.
arXiv Detail & Related papers (2022-11-02T14:19:13Z) - On Robust Cross-View Consistency in Self-Supervised Monocular Depth Estimation [56.97699793236174]
We study two kinds of robust cross-view consistency in this paper.
We exploit the temporal coherence in both depth feature space and 3D voxel space for self-supervised monocular depth estimation.
Experimental results on several outdoor benchmarks show that our method outperforms current state-of-the-art techniques.
arXiv Detail & Related papers (2022-09-19T03:46:13Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
Ray-marching in Camera Space (RiCS) is a new method to represent the self-occlusions of foreground objects in 3D into a 2D self-occlusion map.
We show that our representation map not only allows us to enhance the image quality but also to model temporally coherent complex shadow effects.
arXiv Detail & Related papers (2022-05-14T05:35:35Z) - Physics-based Differentiable Depth Sensor Simulation [5.134435281973137]
We introduce a novel end-to-end differentiable simulation pipeline for the generation of realistic 2.5D scans.
Each module can be differentiated w.r.t sensor and scene parameters.
Our simulation greatly improves the performance of the resulting models on real scans.
arXiv Detail & Related papers (2021-03-30T17:59:43Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
We learn context- and depth-aware feature representation to solve the problem of monocular 3D object detection.
We show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.
arXiv Detail & Related papers (2021-03-30T16:20:24Z) - SCFusion: Real-time Incremental Scene Reconstruction with Semantic
Completion [86.77318031029404]
We propose a framework that performs scene reconstruction and semantic scene completion jointly in an incremental and real-time manner.
Our framework relies on a novel neural architecture designed to process occupancy maps and leverages voxel states to accurately and efficiently fuse semantic completion with the 3D global model.
arXiv Detail & Related papers (2020-10-26T15:31:52Z) - Deep Probabilistic Feature-metric Tracking [27.137827823264942]
We propose a new framework to learn a pixel-wise deep feature map and a deep feature-metric uncertainty map.
CNN predicts a deep initial pose for faster and more reliable convergence.
Experimental results demonstrate state-of-the-art performances on the TUM RGB-D dataset and the 3D rigid object tracking dataset.
arXiv Detail & Related papers (2020-08-31T11:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.