Cluster-based Contrastive Disentangling for Generalized Zero-Shot
Learning
- URL: http://arxiv.org/abs/2203.02648v1
- Date: Sat, 5 Mar 2022 02:50:12 GMT
- Title: Cluster-based Contrastive Disentangling for Generalized Zero-Shot
Learning
- Authors: Yi Gao and Chenwei Tang and Jiancheng Lv
- Abstract summary: Generalized Zero-Shot Learning (GZSL) aims to recognize both seen and unseen classes by training only the seen classes.
We propose a Cluster-based Contrastive Disentangling (CCD) method to improve GZSL by alleviating the semantic gap and domain shift problems.
- Score: 25.92340532509084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalized Zero-Shot Learning (GZSL) aims to recognize both seen and unseen
classes by training only the seen classes, in which the instances of unseen
classes tend to be biased towards the seen class. In this paper, we propose a
Cluster-based Contrastive Disentangling (CCD) method to improve GZSL by
alleviating the semantic gap and domain shift problems. Specifically, we first
cluster the batch data to form several sets containing similar classes. Then,
we disentangle the visual features into semantic-unspecific and
semantic-matched variables, and further disentangle the semantic-matched
variables into class-shared and class-unique variables according to the
clustering results. The disentangled learning module with random swapping and
semantic-visual alignment bridges the semantic gap. Moreover, we introduce
contrastive learning on semantic-matched and class-unique variables to learn
high intra-set and intra-class similarity, as well as inter-set and inter-class
discriminability. Then, the generated visual features conform to the underlying
characteristics of general images and have strong discriminative information,
which alleviates the domain shift problem well. We evaluate our proposed method
on four datasets and achieve state-of-the-art results in both conventional and
generalized settings.
Related papers
- Language-Driven Visual Consensus for Zero-Shot Semantic Segmentation [114.72734384299476]
We propose a Language-Driven Visual Consensus (LDVC) approach, fostering improved alignment of semantic and visual information.
We leverage class embeddings as anchors due to their discrete and abstract nature, steering vision features toward class embeddings.
Our approach significantly boosts the capacity of segmentation models for unseen classes.
arXiv Detail & Related papers (2024-03-13T11:23:55Z) - VGSE: Visually-Grounded Semantic Embeddings for Zero-Shot Learning [113.50220968583353]
We propose to discover semantic embeddings containing discriminative visual properties for zero-shot learning.
Our model visually divides a set of images from seen classes into clusters of local image regions according to their visual similarity.
We demonstrate that our visually-grounded semantic embeddings further improve performance over word embeddings across various ZSL models by a large margin.
arXiv Detail & Related papers (2022-03-20T03:49:02Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - A Simple Approach for Zero-Shot Learning based on Triplet Distribution
Embeddings [6.193231258199234]
ZSL aims to recognize unseen classes without labeled training data by exploiting semantic information.
Existing ZSL methods mainly use vectors to represent the embeddings to the semantic space.
We address this issue by leveraging the use of distribution embeddings.
arXiv Detail & Related papers (2021-03-29T20:26:20Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
We introduce a novel variant called Semantic Contrastive Learning (SCL)
It explores the characteristics of both conventional contrastive learning and deep clustering.
It can amplify the strengths of contrastive learning and deep clustering in a unified approach.
arXiv Detail & Related papers (2021-03-03T20:20:48Z) - OntoZSL: Ontology-enhanced Zero-shot Learning [19.87808305218359]
Key to implementing Zero-shot Learning (ZSL) is to leverage the prior knowledge of classes which builds the semantic relationship between classes.
In this paper, we explore richer and more competitive prior knowledge to model the inter-class relationship for ZSL.
To address the data imbalance between seen classes and unseen classes, we developed a generative ZSL framework with Generative Adversarial Networks (GANs)
arXiv Detail & Related papers (2021-02-15T04:39:58Z) - Cross Knowledge-based Generative Zero-Shot Learning Approach with
Taxonomy Regularization [5.280368849852332]
We develop a generative network-based ZSL approach equipped with the proposed Cross Knowledge Learning (CKL) scheme and Taxonomy Regularization (TR)
CKL enables more relevant semantic features to be trained for semantic-to-visual feature embedding in ZSL.
TR significantly improves the intersections with unseen images with more generalized visual features generated from generative network.
arXiv Detail & Related papers (2021-01-25T04:38:18Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.