Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks
- URL: http://arxiv.org/abs/2203.03282v1
- Date: Mon, 7 Mar 2022 10:56:13 GMT
- Title: Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks
- Authors: Nicola Garau, Niccol\`o Bisagno, Zeno Sambugaro and Nicola Conci
- Abstract summary: We present Agglomerator, a framework capable of providing a representation of part-whole hierarchies from visual cues.
We evaluate our method on common datasets, such as SmallNORB, MNIST, FashionMNIST, CIFAR-10, and CIFAR-100.
- Score: 4.153804257347222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks achieve outstanding results in a large variety of tasks,
often outperforming human experts. However, a known limitation of current
neural architectures is the poor accessibility to understand and interpret the
network response to a given input. This is directly related to the huge number
of variables and the associated non-linearities of neural models, which are
often used as black boxes. When it comes to critical applications as autonomous
driving, security and safety, medicine and health, the lack of interpretability
of the network behavior tends to induce skepticism and limited trustworthiness,
despite the accurate performance of such systems in the given task.
Furthermore, a single metric, such as the classification accuracy, provides a
non-exhaustive evaluation of most real-world scenarios. In this paper, we want
to make a step forward towards interpretability in neural networks, providing
new tools to interpret their behavior. We present Agglomerator, a framework
capable of providing a representation of part-whole hierarchies from visual
cues and organizing the input distribution matching the conceptual-semantic
hierarchical structure between classes. We evaluate our method on common
datasets, such as SmallNORB, MNIST, FashionMNIST, CIFAR-10, and CIFAR-100,
providing a more interpretable model than other state-of-the-art approaches.
Related papers
- Identifying Sub-networks in Neural Networks via Functionally Similar Representations [41.028797971427124]
We take a step toward automating the understanding of the network by investigating the existence of distinct sub-networks.
Our approach offers meaningful insights into the behavior of neural networks with minimal human and computational cost.
arXiv Detail & Related papers (2024-10-21T20:19:00Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Nonlinear classification of neural manifolds with contextual information [6.292933471495322]
manifold capacity has emerged as a promising framework linking population geometry to the separability of neural manifold.
We propose a theoretical framework that overcomes this limitation by leveraging contextual input information.
Our framework's increased expressivity captures representation untanglement in deep networks at early stages of the layer hierarchy, previously inaccessible to analysis.
arXiv Detail & Related papers (2024-05-10T23:37:31Z) - DISCOVER: Making Vision Networks Interpretable via Competition and
Dissection [11.028520416752325]
This work contributes to post-hoc interpretability, and specifically Network Dissection.
Our goal is to present a framework that makes it easier to discover the individual functionality of each neuron in a network trained on a vision task.
arXiv Detail & Related papers (2023-10-07T21:57:23Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Creating Powerful and Interpretable Models withRegression Networks [2.2049183478692584]
We propose a novel architecture, Regression Networks, which combines the power of neural networks with the understandability of regression analysis.
We demonstrate that the models exceed the state-of-the-art performance of interpretable models on several benchmark datasets.
arXiv Detail & Related papers (2021-07-30T03:37:00Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Provably Training Neural Network Classifiers under Fairness Constraints [70.64045590577318]
We show that overparametrized neural networks could meet the constraints.
Key ingredient of building a fair neural network classifier is establishing no-regret analysis for neural networks.
arXiv Detail & Related papers (2020-12-30T18:46:50Z) - Learning for Integer-Constrained Optimization through Neural Networks
with Limited Training [28.588195947764188]
We introduce a symmetric and decomposed neural network structure, which is fully interpretable in terms of the functionality of its constituent components.
By taking advantage of the underlying pattern of the integer constraint, the introduced neural network offers superior generalization performance with limited training.
We show that the introduced decomposed approach can be further extended to semi-decomposed frameworks.
arXiv Detail & Related papers (2020-11-10T21:17:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.