Hierarchical Sketch Induction for Paraphrase Generation
- URL: http://arxiv.org/abs/2203.03463v1
- Date: Mon, 7 Mar 2022 15:28:36 GMT
- Title: Hierarchical Sketch Induction for Paraphrase Generation
- Authors: Tom Hosking, Hao Tang, Mirella Lapata
- Abstract summary: We introduce Hierarchical Refinement Quantized Variational Autoencoders (HRQ-VAE), a method for learning decompositions of dense encodings.
We use HRQ-VAE to encode the syntactic form of an input sentence as a path through the hierarchy, allowing us to more easily predict syntactic sketches at test time.
- Score: 79.87892048285819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a generative model of paraphrase generation, that encourages
syntactic diversity by conditioning on an explicit syntactic sketch. We
introduce Hierarchical Refinement Quantized Variational Autoencoders (HRQ-VAE),
a method for learning decompositions of dense encodings as a sequence of
discrete latent variables that make iterative refinements of increasing
granularity. This hierarchy of codes is learned through end-to-end training,
and represents fine-to-coarse grained information about the input. We use
HRQ-VAE to encode the syntactic form of an input sentence as a path through the
hierarchy, allowing us to more easily predict syntactic sketches at test time.
Extensive experiments, including a human evaluation, confirm that HRQ-VAE
learns a hierarchical representation of the input space, and generates
paraphrases of higher quality than previous systems.
Related papers
- Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
We study learning deep discrete representations from the generative viewpoint.
We endow discrete distributions over sequences of codewords and learn a deterministic decoder that transports the distribution over the sequences of codewords to the data distribution.
We develop further theories to connect it with the clustering viewpoint of WS distance, allowing us to have a better and more controllable clustering solution.
arXiv Detail & Related papers (2023-02-12T13:51:36Z) - Unsupervised Syntactically Controlled Paraphrase Generation with
Abstract Meaning Representations [59.10748929158525]
Abstract Representations (AMR) can greatly improve the performance of unsupervised syntactically controlled paraphrase generation.
Our proposed model, AMR-enhanced Paraphrase Generator (AMRPG), encodes the AMR graph and the constituency parses the input sentence into two disentangled semantic and syntactic embeddings.
Experiments show that AMRPG generates more accurate syntactically controlled paraphrases, both quantitatively and qualitatively, compared to the existing unsupervised approaches.
arXiv Detail & Related papers (2022-11-02T04:58:38Z) - Recursive Decoding: A Situated Cognition Approach to Compositional
Generation in Grounded Language Understanding [0.0]
We present Recursive Decoding, a novel procedure for training and using seq2seq models.
Rather than generating an entire output sequence in one pass, models are trained to predict one token at a time.
RD yields dramatic improvement on two previously neglected generalization tasks in gSCAN.
arXiv Detail & Related papers (2022-01-27T19:13:42Z) - Cross-Thought for Sentence Encoder Pre-training [89.32270059777025]
Cross-Thought is a novel approach to pre-training sequence encoder.
We train a Transformer-based sequence encoder over a large set of short sequences.
Experiments on question answering and textual entailment tasks demonstrate that our pre-trained encoder can outperform state-of-the-art encoders.
arXiv Detail & Related papers (2020-10-07T21:02:41Z) - Neural Syntactic Preordering for Controlled Paraphrase Generation [57.5316011554622]
Our work uses syntactic transformations to softly "reorder'' the source sentence and guide our neural paraphrasing model.
First, given an input sentence, we derive a set of feasible syntactic rearrangements using an encoder-decoder model.
Next, we use each proposed rearrangement to produce a sequence of position embeddings, which encourages our final encoder-decoder paraphrase model to attend to the source words in a particular order.
arXiv Detail & Related papers (2020-05-05T09:02:25Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.