Reinforcement Learning for Location-Aware Scheduling
- URL: http://arxiv.org/abs/2203.03480v1
- Date: Mon, 7 Mar 2022 15:51:00 GMT
- Title: Reinforcement Learning for Location-Aware Scheduling
- Authors: Stelios Stavroulakis and Biswa Sengupta
- Abstract summary: We show how various aspects of the warehouse environment affect performance and execution priority.
We propose a compact representation of the state and action space for location-aware multi-agent systems.
We also show how agents trained in certain environments maintain performance in completely unseen settings.
- Score: 1.0660480034605238
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent techniques in dynamical scheduling and resource management have found
applications in warehouse environments due to their ability to organize and
prioritize tasks in a higher temporal resolution. The rise of deep
reinforcement learning, as a learning paradigm, has enabled decentralized agent
populations to discover complex coordination strategies. However, training
multiple agents simultaneously introduce many obstacles in training as
observation and action spaces become exponentially large. In our work, we
experimentally quantify how various aspects of the warehouse environment (e.g.,
floor plan complexity, information about agents' live location, level of task
parallelizability) affect performance and execution priority. To achieve
efficiency, we propose a compact representation of the state and action space
for location-aware multi-agent systems, wherein each agent has knowledge of
only self and task coordinates, hence only partial observability of the
underlying Markov Decision Process. Finally, we show how agents trained in
certain environments maintain performance in completely unseen settings and
also correlate performance degradation with floor plan geometry.
Related papers
- Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
We propose a combined task and motion planning approach to optimize sequencing, assignment, and execution of tasks.
The framework relies on decoupling tasks and actions, where an action is one possible geometric realization of a symbolic task.
We demonstrate the approach effectiveness in a collaborative manufacturing scenario, in which a robotic arm and a human worker shall assemble a mosaic.
arXiv Detail & Related papers (2023-03-27T01:50:45Z) - Inferring Versatile Behavior from Demonstrations by Matching Geometric
Descriptors [72.62423312645953]
Humans intuitively solve tasks in versatile ways, varying their behavior in terms of trajectory-based planning and for individual steps.
Current Imitation Learning algorithms often only consider unimodal expert demonstrations and act in a state-action-based setting.
Instead, we combine a mixture of movement primitives with a distribution matching objective to learn versatile behaviors that match the expert's behavior and versatility.
arXiv Detail & Related papers (2022-10-17T16:42:59Z) - Hierarchically Structured Scheduling and Execution of Tasks in a
Multi-Agent Environment [1.0660480034605238]
In a warehouse environment, tasks appear dynamically. Consequently, a task management system that matches them with the workforce too early is necessarily sub-optimal.
We propose to use deep reinforcement learning to solve both the high-level scheduling problem and the low-level multi-agent problem of schedule execution.
arXiv Detail & Related papers (2022-03-06T18:11:34Z) - Learning Efficient Multi-Agent Cooperative Visual Exploration [18.42493808094464]
We consider the task of visual indoor exploration with multiple agents, where the agents need to cooperatively explore the entire indoor region using as few steps as possible.
We extend the state-of-the-art single-agent RL solution, Active Neural SLAM (ANS), to the multi-agent setting by introducing a novel RL-based global-goal planner, Spatial Coordination Planner ( SCP)
SCP leverages spatial information from each individual agent in an end-to-end manner and effectively guides the agents to navigate towards different spatial goals with high exploration efficiency.
arXiv Detail & Related papers (2021-10-12T04:48:10Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents.
We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Training Decentralized Execution paradigm.
arXiv Detail & Related papers (2021-09-22T10:08:15Z) - Domain-Robust Visual Imitation Learning with Mutual Information
Constraints [0.0]
We introduce a new algorithm called Disentangling Generative Adversarial Imitation Learning (DisentanGAIL)
Our algorithm enables autonomous agents to learn directly from high dimensional observations of an expert performing a task.
arXiv Detail & Related papers (2021-03-08T21:18:58Z) - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement
Learning in Mixed Dynamic Environments [30.407700996710023]
This paper proposes a decentralized partially observable multi-agent path planning with evolutionary reinforcement learning (MAPPER) method.
We decompose the long-range navigation task into many easier sub-tasks under the guidance of a global planner.
Our approach models dynamic obstacles' behavior with an image-based representation and trains a policy in mixed dynamic environments without homogeneity assumption.
arXiv Detail & Related papers (2020-07-30T20:14:42Z) - Bottom-up mechanism and improved contract net protocol for the dynamic
task planning of heterogeneous Earth observation resources [61.75759893720484]
Earth observation resources are becoming increasingly indispensable in disaster relief, damage assessment and related domains.
Many unpredicted factors, such as the change of observation task requirements, to the occurring of bad weather and resource failures, may cause the scheduled observation scheme to become infeasible.
A bottom-up distributed coordinated framework together with an improved contract net are proposed to facilitate the dynamic task replanning for heterogeneous Earth observation resources.
arXiv Detail & Related papers (2020-07-13T03:51:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.