Emotion Regulation and Dynamics of Moral Concerns During the Early
COVID-19 Pandemic
- URL: http://arxiv.org/abs/2203.03608v2
- Date: Mon, 11 Apr 2022 23:06:26 GMT
- Title: Emotion Regulation and Dynamics of Moral Concerns During the Early
COVID-19 Pandemic
- Authors: Siyi Guo, Keith Burghardt, Ashwin Rao, Kristina Lerman
- Abstract summary: We use state-of-the-art methods to measure sentiment, emotions, and moral concerns in social media messages posted in the early stage of the pandemic.
Results show how collective emotional states have changed since the pandemic began, and how social media can provide a useful tool to understand, and even regulate, diverse patterns underlying human affect.
- Score: 2.8055247295021695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic has upended daily life around the globe, posing a
threat to public health. Intuitively, we expect that surging cases and deaths
would lead to fear, distress and other negative emotions. However, using
state-of-the-art methods to measure sentiment, emotions, and moral concerns in
social media messages posted in the early stage of the pandemic, we see a
counter-intuitive rise in positive affect. We hypothesize that the increase of
positivity is associated with a decrease of uncertainty and emotion regulation.
Finally, we identify a partisan divide in moral and emotional reactions that
emerged after the first US death. Overall, these results show how collective
emotional states have changed since the pandemic began, and how social media
can provide a useful tool to understand, and even regulate, diverse patterns
underlying human affect.
Related papers
- Emotion Granularity from Text: An Aggregate-Level Indicator of Mental Health [25.166884750592175]
In psychology, variation in the ability of individuals to differentiate between emotion concepts is called emotion granularity.
High emotion granularity has been linked with better mental and physical health.
Low emotion granularity has been linked with maladaptive emotion regulation strategies and poor health outcomes.
arXiv Detail & Related papers (2024-03-04T18:12:10Z) - CauESC: A Causal Aware Model for Emotional Support Conversation [79.4451588204647]
Existing approaches ignore the emotion causes of the distress.
They focus on the seeker's own mental state rather than the emotional dynamics during interaction between speakers.
We propose a novel framework CauESC, which firstly recognizes the emotion causes of the distress, as well as the emotion effects triggered by the causes.
arXiv Detail & Related papers (2024-01-31T11:30:24Z) - Why Do You Feel This Way? Summarizing Triggers of Emotions in Social
Media Posts [61.723046082145416]
We introduce CovidET (Emotions and their Triggers during Covid-19), a dataset of 1,900 English Reddit posts related to COVID-19.
We develop strong baselines to jointly detect emotions and summarize emotion triggers.
Our analyses show that CovidET presents new challenges in emotion-specific summarization, as well as multi-emotion detection in long social media posts.
arXiv Detail & Related papers (2022-10-22T19:10:26Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
We propose a novel formulation that measures the relative difference between the speech samples of different emotions.
We then incorporate our formulation into a sequence-to-sequence emotional text-to-speech framework.
At run-time, we control the model to produce the desired emotion mixture by manually defining an emotion attribute vector.
arXiv Detail & Related papers (2022-08-11T15:45:58Z) - When a crisis strikes: Emotion analysis and detection during COVID-19 [96.03869351276478]
We present CovidEmo, 1K tweets labeled with emotions.
We examine how well large pre-trained language models generalize across domains and crises.
arXiv Detail & Related papers (2021-07-23T04:07:14Z) - MIME: MIMicking Emotions for Empathetic Response Generation [82.57304533143756]
Current approaches to empathetic response generation view the set of emotions expressed in the input text as a flat structure.
We argue that empathetic responses often mimic the emotion of the user to a varying degree, depending on its positivity or negativity and content.
arXiv Detail & Related papers (2020-10-04T00:35:47Z) - How Have We Reacted To The COVID-19 Pandemic? Analyzing Changing Indian
Emotions Through The Lens of Twitter [2.805251632575323]
WHO has reported more than 13 million confirmed cases including close to 600,000 deaths across 216 countries and territories.
India has gradually moved up the ranks to become the third worst-hit nation by the pandemic after the US and Brazil.
We propose a deep learning-based system to identify people's emotions from their tweets.
arXiv Detail & Related papers (2020-08-20T15:39:05Z) - Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using
Social Media [14.662523926129117]
We analyze the topic and sentiment dynamics due to COVID-19 from the massive social media posts.
Some topics like stay safe home" are dominated with positive sentiment.
The others such as people death" are consistently showing negative sentiment.
arXiv Detail & Related papers (2020-07-05T12:05:30Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
We analyze the affective trajectories of the American people and the Chinese people based on Twitter and Weibo posts between January 20th, 2020 and May 11th 2020.
By contrasting two very different countries, China and the Unites States, we reveal sharp differences in people's views on COVID-19 in different cultures.
Our study provides a computational approach to unveiling public emotions and concerns on the pandemic in real-time, which would potentially help policy-makers better understand people's need and thus make optimal policy.
arXiv Detail & Related papers (2020-05-29T09:24:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.