Occupancy Flow Fields for Motion Forecasting in Autonomous Driving
- URL: http://arxiv.org/abs/2203.03875v1
- Date: Tue, 8 Mar 2022 06:26:50 GMT
- Title: Occupancy Flow Fields for Motion Forecasting in Autonomous Driving
- Authors: Reza Mahjourian, Jinkyu Kim, Yuning Chai, Mingxing Tan, Ben Sapp,
Dragomir Anguelov
- Abstract summary: We propose Occupancy Flow Fields, a new representation for motion forecasting of multiple agents.
Our representation is a-temporal grid with each grid cell containing both the probability magnitude of the cell being occupied by any agent, and a two-dimensional flow vector representing the direction of the motion in that cell.
We report experimental results on a large in-house autonomous driving dataset and the INTERACTION dataset, and show that our model outperforms state-of-the-art models.
- Score: 36.64394937525725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Occupancy Flow Fields, a new representation for motion forecasting
of multiple agents, an important task in autonomous driving. Our representation
is a spatio-temporal grid with each grid cell containing both the probability
of the cell being occupied by any agent, and a two-dimensional flow vector
representing the direction and magnitude of the motion in that cell. Our method
successfully mitigates shortcomings of the two most commonly-used
representations for motion forecasting: trajectory sets and occupancy grids.
Although occupancy grids efficiently represent the probabilistic location of
many agents jointly, they do not capture agent motion and lose the agent
identities. To this end, we propose a deep learning architecture that generates
Occupancy Flow Fields with the help of a new flow trace loss that establishes
consistency between the occupancy and flow predictions. We demonstrate the
effectiveness of our approach using three metrics on occupancy prediction,
motion estimation, and agent ID recovery. In addition, we introduce the problem
of predicting speculative agents, which are currently-occluded agents that may
appear in the future through dis-occlusion or by entering the field of view. We
report experimental results on a large in-house autonomous driving dataset and
the public INTERACTION dataset, and show that our model outperforms
state-of-the-art models.
Related papers
- Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
The ability to predict the future trajectories of traffic participants is crucial for the safe and efficient operation of autonomous vehicles.
In this paper, a diffusion-based generative model for multi-agent trajectory prediction is proposed.
The model is capable of capturing the complex interactions between traffic participants and the environment, accurately learning the multimodal nature of the data.
arXiv Detail & Related papers (2024-03-18T10:35:15Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - VectorFlow: Combining Images and Vectors for Traffic Occupancy and Flow
Prediction [18.277777620073685]
We propose a novel occupancy flow fields predictor to produce accurate occupancy and flow predictions.
Our model ranks 3rd place on the Open dataset Occupancy and Flow Prediction Challenge, and achieves the best performance in the occluded occupancy and flow prediction task.
arXiv Detail & Related papers (2022-08-09T03:49:04Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Traffic Agent Trajectory Prediction Using Social Convolution and
Attention Mechanism [57.68557165836806]
We propose a model to predict the trajectories of target agents around an autonomous vehicle.
We encode the target agent history trajectories as an attention mask and construct a social map to encode the interactive relationship between the target agent and its surrounding agents.
To verify the effectiveness of our method, we widely compare with several methods on a public dataset, achieving a 20% error decrease.
arXiv Detail & Related papers (2020-07-06T03:48:08Z) - Improving Movement Predictions of Traffic Actors in Bird's-Eye View
Models using GANs and Differentiable Trajectory Rasterization [12.652210024012374]
One of the most critical pieces of the self-driving puzzle is the task of predicting future movement of surrounding traffic actors.
Methods based on top-down sceneization on one side and Generative Adrial Networks (GANs) on the other have shown to be particularly successful.
In this paper we build upon these two directions and propose aversa-based conditional GAN architecture.
We evaluate the proposed method on a large-scale, real-world data set, showing that it outperforms state-of-the-art GAN-based baselines.
arXiv Detail & Related papers (2020-04-14T00:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.