Counting with Adaptive Auxiliary Learning
- URL: http://arxiv.org/abs/2203.04061v1
- Date: Tue, 8 Mar 2022 13:10:17 GMT
- Title: Counting with Adaptive Auxiliary Learning
- Authors: Yanda Meng, Joshua Bridge, Meng Wei, Yitian Zhao, Yihong Qiao, Xiaoyun
Yang, Xiaowei Huang, Yalin Zheng
- Abstract summary: This paper proposes an adaptive auxiliary task learning based approach for object counting problems.
We develop an attention-enhanced adaptively shared backbone network to enable both task-shared and task-tailored features learning.
Our method achieves superior performance to the state-of-the-art auxiliary task learning based counting methods.
- Score: 23.715818463425503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an adaptive auxiliary task learning based approach for
object counting problems. Unlike existing auxiliary task learning based
methods, we develop an attention-enhanced adaptively shared backbone network to
enable both task-shared and task-tailored features learning in an end-to-end
manner. The network seamlessly combines standard Convolution Neural Network
(CNN) and Graph Convolution Network (GCN) for feature extraction and feature
reasoning among different domains of tasks. Our approach gains enriched
contextual information by iteratively and hierarchically fusing the features
across different task branches of the adaptive CNN backbone. The whole
framework pays special attention to the objects' spatial locations and varied
density levels, informed by object (or crowd) segmentation and density level
segmentation auxiliary tasks. In particular, thanks to the proposed dilated
contrastive density loss function, our network benefits from individual and
regional context supervision in terms of pixel-independent and pixel-dependent
feature learning mechanisms, along with strengthened robustness. Experiments on
seven challenging multi-domain datasets demonstrate that our method achieves
superior performance to the state-of-the-art auxiliary task learning based
counting methods. Our code is made publicly available at:
https://github.com/smallmax00/Counting_With_Adaptive_Auxiliary
Related papers
- Densely Decoded Networks with Adaptive Deep Supervision for Medical
Image Segmentation [19.302294715542175]
We propose densely decoded networks (ddn), by selectively introducing 'crutch' network connections.
Such 'crutch' connections in each upsampling stage of the network decoder enhance target localization.
We also present a training strategy based on adaptive deep supervision (ads), which exploits and adapts specific attributes of input dataset.
arXiv Detail & Related papers (2024-02-05T00:44:57Z) - Learning Good Features to Transfer Across Tasks and Domains [16.05821129333396]
We first show that such knowledge can be shared across tasks by learning a mapping between task-specific deep features in a given domain.
Then, we show that this mapping function, implemented by a neural network, is able to generalize to novel unseen domains.
arXiv Detail & Related papers (2023-01-26T18:49:39Z) - Deep transfer learning for partial differential equations under
conditional shift with DeepONet [0.0]
We propose a novel TL framework for task-specific learning under conditional shift with a deep operator network (DeepONet)
Inspired by the conditional embedding operator theory, we measure the statistical distance between the source domain and the target feature domain.
We show that the proposed TL framework enables fast and efficient multi-task operator learning, despite significant differences between the source and target domains.
arXiv Detail & Related papers (2022-04-20T23:23:38Z) - Self-Supervised Graph Neural Network for Multi-Source Domain Adaptation [51.21190751266442]
Domain adaptation (DA) tries to tackle the scenarios when the test data does not fully follow the same distribution of the training data.
By learning from large-scale unlabeled samples, self-supervised learning has now become a new trend in deep learning.
We propose a novel textbfSelf-textbfSupervised textbfGraph Neural Network (SSG) to enable more effective inter-task information exchange and knowledge sharing.
arXiv Detail & Related papers (2022-04-08T03:37:56Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting.
We propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions.
Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain.
arXiv Detail & Related papers (2021-05-17T13:42:09Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Auxiliary Learning by Implicit Differentiation [54.92146615836611]
Training neural networks with auxiliary tasks is a common practice for improving the performance on a main task of interest.
Here, we propose a novel framework, AuxiLearn, that targets both challenges based on implicit differentiation.
First, when useful auxiliaries are known, we propose learning a network that combines all losses into a single coherent objective function.
Second, when no useful auxiliary task is known, we describe how to learn a network that generates a meaningful, novel auxiliary task.
arXiv Detail & Related papers (2020-06-22T19:35:07Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.