Comparing Classical-Quantum Portfolio Optimization with Enhanced
Constraints
- URL: http://arxiv.org/abs/2203.04912v1
- Date: Wed, 9 Mar 2022 17:46:32 GMT
- Title: Comparing Classical-Quantum Portfolio Optimization with Enhanced
Constraints
- Authors: Salvatore Certo, Anh Dung Pham, Daniel Beaulieu
- Abstract summary: We show how to add fundamental analysis to the portfolio optimization problem, adding in asset-specific and global constraints based on chosen balance sheet metrics.
We analyze the current state-of-the-art algorithms for solving such a problem using D-Wave's Quantum Processor and compare the quality of the solutions obtained to commercially-available optimization software.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the problems frequently mentioned as a candidate for quantum advantage
is that of selecting a portfolio of financial assets to maximize returns while
minimizing risk. In this paper we formulate several real-world constraints for
use in a Quantum Annealer (QA), extending the scenarios in which the algorithm
can be implemented. Specifically, we show how to add fundamental analysis to
the portfolio optimization problem, adding in asset-specific and global
constraints based on chosen balance sheet metrics. We also expand on previous
work in improving the constraint to enforce investment bands in sectors and
limiting the number of assets to invest in, creating a robust and flexible
solution amenable to QA.
Importantly, we analyze the current state-of-the-art algorithms for solving
such a problem using D-Wave's Quantum Processor and compare the quality of the
solutions obtained to commercially-available optimization software. We explore
a variety of traditional and new constraints that make the problem
computationally harder to solve and show that even with these additional
constraints, classical algorithms outperform current hybrid solutions in the
static portfolio optimization model.
Related papers
- PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
Portfolio Optimization (PO) is a financial problem aiming to maximize the net gains while minimizing the risks in a given investment portfolio.
We propose a novel scalable framework, denoted PO-QA, to investigate the variation of quantum parameters.
Our results provide effective insights into comprehending PO from the lens of Quantum Machine Learning.
arXiv Detail & Related papers (2024-07-29T10:26:28Z) - A Novel Knapsack-based Financial Portfolio Optimization using Quantum Approximate Optimization Algorithm [2.6603181502541986]
We propose a method that uses the quantum computing capabilities of the quantum walk mixer with the quantum approximate optimization algorithm (QAOA) to address the challenges presented by the NP-hard problem.
Our study successfully achieves the approximate ratio of the portfolio optimization technique using a circuit layer of p >= 3, compared to the classical best-known solution of the knapsack problem.
arXiv Detail & Related papers (2024-02-11T08:20:26Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Diversifying Investments and Maximizing Sharpe Ratio: a novel QUBO
formulation [0.0]
We propose a new QUBO formulation for the task described and provide the mathematical details and required assumptions.
We derive results via the available QUBO solvers, as well as discussing the behaviour of Hybrid approaches to tackle large scale problems in the term.
arXiv Detail & Related papers (2023-02-23T19:15:44Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Financial Index Tracking via Quantum Computing with Cardinality
Constraints [1.3854111346209868]
We demonstrate how to apply non-linear cardinality constraints, important for real-world asset management, to quantum portfolios.
We apply the methodology to create innovative problem index tracking portfolios.
arXiv Detail & Related papers (2022-08-24T08:59:19Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.