Iterative Corresponding Geometry: Fusing Region and Depth for Highly
Efficient 3D Tracking of Textureless Objects
- URL: http://arxiv.org/abs/2203.05334v1
- Date: Thu, 10 Mar 2022 12:30:50 GMT
- Title: Iterative Corresponding Geometry: Fusing Region and Depth for Highly
Efficient 3D Tracking of Textureless Objects
- Authors: Manuel Stoiber, Martin Sundermeyer, Rudolph Triebel
- Abstract summary: ICG is a novel probabilistic tracker that fuses region and depth information and only requires the object geometry.
Our method deploys correspondence lines and points to iteratively refine the pose.
Experiments on the YCB-Video, OPT, and Choi datasets demonstrate that, even for textured objects, our approach outperforms the current state of the art.
- Score: 25.448657318818764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tracking objects in 3D space and predicting their 6DoF pose is an essential
task in computer vision. State-of-the-art approaches often rely on object
texture to tackle this problem. However, while they achieve impressive results,
many objects do not contain sufficient texture, violating the main underlying
assumption. In the following, we thus propose ICG, a novel probabilistic
tracker that fuses region and depth information and only requires the object
geometry. Our method deploys correspondence lines and points to iteratively
refine the pose. We also implement robust occlusion handling to improve
performance in real-world settings. Experiments on the YCB-Video, OPT, and Choi
datasets demonstrate that, even for textured objects, our approach outperforms
the current state of the art with respect to accuracy and robustness. At the
same time, ICG shows fast convergence and outstanding efficiency, requiring
only 1.3 ms per frame on a single CPU core. Finally, we analyze the influence
of individual components and discuss our performance compared to deep
learning-based methods. The source code of our tracker is publicly available.
Related papers
- Perspective-aware Convolution for Monocular 3D Object Detection [2.33877878310217]
We propose a novel perspective-aware convolutional layer that captures long-range dependencies in images.
By enforcing convolutional kernels to extract features along the depth axis of every image pixel, we incorporates perspective information into network architecture.
We demonstrate improved performance on the KITTI3D dataset, achieving a 23.9% average precision in the easy benchmark.
arXiv Detail & Related papers (2023-08-24T17:25:36Z) - NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization [80.3424839706698]
We present NeurOCS, a framework that uses instance masks 3D boxes as input to learn 3D object shapes by means of differentiable rendering.
Our approach rests on insights in learning a category-level shape prior directly from real driving scenes.
We make critical design choices to learn object coordinates more effectively from an object-centric view.
arXiv Detail & Related papers (2023-05-28T16:18:41Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
In this paper, we revisit the local point aggregators from the perspective of allocating computational resources.
We find that the simplest pillar based models perform surprisingly well considering both accuracy and latency.
Our results challenge the common intuition that the detailed geometry modeling is essential to achieve high performance for 3D object detection.
arXiv Detail & Related papers (2023-05-08T17:59:14Z) - 3D Video Object Detection with Learnable Object-Centric Global
Optimization [65.68977894460222]
Correspondence-based optimization is the cornerstone for 3D scene reconstruction but is less studied in 3D video object detection.
We propose BA-Det, an end-to-end optimizable object detector with object-centric temporal correspondence learning and featuremetric object bundle adjustment.
arXiv Detail & Related papers (2023-03-27T17:39:39Z) - BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown
Objects [89.2314092102403]
We present a near real-time method for 6-DoF tracking of an unknown object from a monocular RGBD video sequence.
Our method works for arbitrary rigid objects, even when visual texture is largely absent.
arXiv Detail & Related papers (2023-03-24T17:13:49Z) - Graph-DETR3D: Rethinking Overlapping Regions for Multi-View 3D Object
Detection [17.526914782562528]
We propose Graph-DETR3D to automatically aggregate multi-view imagery information through graph structure learning (GSL)
Our best model achieves 49.5 NDS on the nuScenes test leaderboard, achieving new state-of-the-art in comparison with various published image-view 3D object detectors.
arXiv Detail & Related papers (2022-04-25T12:10:34Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z) - Objects are Different: Flexible Monocular 3D Object Detection [87.82253067302561]
We propose a flexible framework for monocular 3D object detection which explicitly decouples the truncated objects and adaptively combines multiple approaches for object depth estimation.
Experiments demonstrate that our method outperforms the state-of-the-art method by relatively 27% for the moderate level and 30% for the hard level in the test set of KITTI benchmark.
arXiv Detail & Related papers (2021-04-06T07:01:28Z) - Factor Graph based 3D Multi-Object Tracking in Point Clouds [8.411514688735183]
We propose a novel optimization-based approach that does not rely on explicit and fixed assignments.
We demonstrate its performance on the real world KITTI tracking dataset and achieve better results than many state-of-the-art algorithms.
arXiv Detail & Related papers (2020-08-12T13:34:46Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.