SATLab at SemEval-2022 Task 4: Trying to Detect Patronizing and
Condescending Language with only Character and Word N-grams
- URL: http://arxiv.org/abs/2203.05355v1
- Date: Thu, 10 Mar 2022 13:09:48 GMT
- Title: SATLab at SemEval-2022 Task 4: Trying to Detect Patronizing and
Condescending Language with only Character and Word N-grams
- Authors: Yves Bestgen
- Abstract summary: A logistic regression model only fed with character and word n-grams is proposed for the SemEval-2022 Task 4 on Patronizing and Condescending Language Detection.
It obtained an average level of performance, well above the performance of a system that tries to guess without using any knowledge about the task, but much lower than the best teams.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A logistic regression model only fed with character and word n-grams is
proposed for the SemEval-2022 Task 4 on Patronizing and Condescending Language
Detection (PCL). It obtained an average level of performance, well above the
performance of a system that tries to guess without using any knowledge about
the task, but much lower than the best teams. As the proposed model is very
similar to the one that performed well on a task requiring to automatically
identify hate speech and offensive content, this paper confirms the difficulty
of PCL detection.
Related papers
- SemEval-2024 Shared Task 6: SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes [48.83290963506378]
This paper presents the results of the SHROOM, a shared task focused on detecting hallucinations.
We observe a number of key trends in how this approach was tackled.
While a majority of the teams did outperform our proposed baseline system, the performances of top-scoring systems are still consistent with a random handling of the more challenging items.
arXiv Detail & Related papers (2024-03-12T15:06:22Z) - Pushing the Limits of ChatGPT on NLP Tasks [79.17291002710517]
Despite the success of ChatGPT, its performances on most NLP tasks are still well below the supervised baselines.
In this work, we looked into the causes, and discovered that its subpar performance was caused by the following factors.
We propose a collection of general modules to address these issues, in an attempt to push the limits of ChatGPT on NLP tasks.
arXiv Detail & Related papers (2023-06-16T09:40:05Z) - Did You Read the Instructions? Rethinking the Effectiveness of Task
Definitions in Instruction Learning [74.70157466822612]
We systematically study the role of task definitions in instruction learning.
We find that model performance drops substantially when removing contents describing the task output.
We propose two strategies to help models better leverage task instructions.
arXiv Detail & Related papers (2023-06-01T21:11:24Z) - BEIKE NLP at SemEval-2022 Task 4: Prompt-Based Paragraph Classification
for Patronizing and Condescending Language Detection [13.944149742291788]
PCL detection task is aimed at identifying language that is patronizing or condescending towards vulnerable communities in the general media.
In this paper, we give an introduction to our solution, which exploits the power of prompt-based learning on paragraph classification.
arXiv Detail & Related papers (2022-08-02T08:38:47Z) - UMass PCL at SemEval-2022 Task 4: Pre-trained Language Model Ensembles
for Detecting Patronizing and Condescending Language [0.0]
Patronizing and condescending language (PCL) is everywhere, but rarely is the focus on its use by media towards vulnerable communities.
In this paper, we describe our system for detecting such language which was submitted to SemEval 2022 Task 4: Patronizing and Condescending Language Detection.
arXiv Detail & Related papers (2022-04-18T13:22:10Z) - PALI-NLP at SemEval-2022 Task 4: Discriminative Fine-tuning of Deep
Transformers for Patronizing and Condescending Language Detection [4.883341580669763]
We propose a novel Transformer-based model and its ensembles to accurately understand such language context for PCL detection.
To facilitate comprehension of the subtle and subjective nature of PCL, two fine-tuning strategies are applied.
The system achieves remarkable results on the official ranking, namely 1st in Subtask 1 and 5th in Subtask 2.
arXiv Detail & Related papers (2022-03-09T10:05:10Z) - Grad2Task: Improved Few-shot Text Classification Using Gradients for
Task Representation [24.488427641442694]
We propose a novel conditional neural process-based approach for few-shot text classification.
Our key idea is to represent each task using gradient information from a base model.
Our approach outperforms traditional fine-tuning, sequential transfer learning, and state-of-the-art meta learning approaches.
arXiv Detail & Related papers (2022-01-27T15:29:30Z) - Weighted Training for Cross-Task Learning [71.94908559469475]
We introduce Target-Aware Weighted Training (TAWT), a weighted training algorithm for cross-task learning.
We show that TAWT is easy to implement, is computationally efficient, requires little hyper parameter tuning, and enjoys non-asymptotic learning-theoretic guarantees.
As a byproduct, the proposed representation-based task distance allows one to reason in a theoretically principled way about several critical aspects of cross-task learning.
arXiv Detail & Related papers (2021-05-28T20:27:02Z) - A study of text representations in Hate Speech Detection [0.0]
Current EU and US legislation against hateful language has led to automatic tools being a necessary component of the Hate Speech detection task and pipeline.
In this study, we examine the performance of several, diverse text representation techniques paired with multiple classification algorithms, on the automatic Hate Speech detection task.
arXiv Detail & Related papers (2021-02-08T20:39:17Z) - MC-BERT: Efficient Language Pre-Training via a Meta Controller [96.68140474547602]
Large-scale pre-training is computationally expensive.
ELECTRA, an early attempt to accelerate pre-training, trains a discriminative model that predicts whether each input token was replaced by a generator.
We propose a novel meta-learning framework, MC-BERT, to achieve better efficiency and effectiveness.
arXiv Detail & Related papers (2020-06-10T09:22:19Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
We build an offensive language detection system, which combines multi-task learning with BERT-based models.
Our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place.
arXiv Detail & Related papers (2020-04-28T11:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.