Block-Sparse Adversarial Attack to Fool Transformer-Based Text
Classifiers
- URL: http://arxiv.org/abs/2203.05948v1
- Date: Fri, 11 Mar 2022 14:37:41 GMT
- Title: Block-Sparse Adversarial Attack to Fool Transformer-Based Text
Classifiers
- Authors: Sahar Sadrizadeh, Ljiljana Dolamic, Pascal Frossard
- Abstract summary: In this paper, we propose a gradient-based adversarial attack against transformer-based text classifiers.
Experimental results demonstrate that, while our adversarial attack maintains the semantics of the sentence, it can reduce the accuracy of GPT-2 to less than 5%.
- Score: 49.50163349643615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, it has been shown that, in spite of the significant performance of
deep neural networks in different fields, those are vulnerable to adversarial
examples. In this paper, we propose a gradient-based adversarial attack against
transformer-based text classifiers. The adversarial perturbation in our method
is imposed to be block-sparse so that the resultant adversarial example differs
from the original sentence in only a few words. Due to the discrete nature of
textual data, we perform gradient projection to find the minimizer of our
proposed optimization problem. Experimental results demonstrate that, while our
adversarial attack maintains the semantics of the sentence, it can reduce the
accuracy of GPT-2 to less than 5% on different datasets (AG News, MNLI, and
Yelp Reviews). Furthermore, the block-sparsity constraint of the proposed
optimization problem results in small perturbations in the adversarial example.
Related papers
- A Constraint-Enforcing Reward for Adversarial Attacks on Text Classifiers [10.063169009242682]
We train an encoder-decoder paraphrase model to generate adversarial examples.
We adopt a reinforcement learning algorithm and propose a constraint-enforcing reward.
We show how key design choices impact the generated examples and discuss the strengths and weaknesses of the proposed approach.
arXiv Detail & Related papers (2024-05-20T09:33:43Z) - Forging the Forger: An Attempt to Improve Authorship Verification via Data Augmentation [52.72682366640554]
Authorship Verification (AV) is a text classification task concerned with inferring whether a candidate text has been written by one specific author or by someone else.
It has been shown that many AV systems are vulnerable to adversarial attacks, where a malicious author actively tries to fool the classifier by either concealing their writing style, or by imitating the style of another author.
arXiv Detail & Related papers (2024-03-17T16:36:26Z) - Single Word Change is All You Need: Designing Attacks and Defenses for
Text Classifiers [12.167426402230229]
A significant portion of adversarial examples generated by existing methods change only one word.
This single-word perturbation vulnerability represents a significant weakness in classifiers.
We present the SP-Attack, designed to exploit the single-word perturbation vulnerability, achieving a higher attack success rate.
We also propose SP-Defense, which aims to improve rho by applying data augmentation in learning.
arXiv Detail & Related papers (2024-01-30T17:30:44Z) - In and Out-of-Domain Text Adversarial Robustness via Label Smoothing [64.66809713499576]
We study the adversarial robustness provided by various label smoothing strategies in foundational models for diverse NLP tasks.
Our experiments show that label smoothing significantly improves adversarial robustness in pre-trained models like BERT, against various popular attacks.
We also analyze the relationship between prediction confidence and robustness, showing that label smoothing reduces over-confident errors on adversarial examples.
arXiv Detail & Related papers (2022-12-20T14:06:50Z) - Estimating the Adversarial Robustness of Attributions in Text with
Transformers [44.745873282080346]
We establish a novel definition of attribution robustness (AR) in text classification, based on Lipschitz continuity.
We then propose our novel TransformerExplanationAttack (TEA), a strong adversary that provides a tight estimation for attribution in text classification.
arXiv Detail & Related papers (2022-12-18T20:18:59Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Bridge the Gap Between CV and NLP! A Gradient-based Textual Adversarial
Attack Framework [17.17479625646699]
We propose a unified framework to craft textual adversarial samples.
In this paper, we instantiate our framework with an attack algorithm named Textual Projected Gradient Descent (T-PGD)
arXiv Detail & Related papers (2021-10-28T17:31:51Z) - Transferable Sparse Adversarial Attack [62.134905824604104]
We introduce a generator architecture to alleviate the overfitting issue and thus efficiently craft transferable sparse adversarial examples.
Our method achieves superior inference speed, 700$times$ faster than other optimization-based methods.
arXiv Detail & Related papers (2021-05-31T06:44:58Z) - Improving Transformation-based Defenses against Adversarial Examples
with First-order Perturbations [16.346349209014182]
Studies show that neural networks are susceptible to adversarial attacks.
This exposes a potential threat to neural network-based intelligent systems.
We propose a method for counteracting adversarial perturbations to improve adversarial robustness.
arXiv Detail & Related papers (2021-03-08T06:27:24Z) - Class-Conditional Defense GAN Against End-to-End Speech Attacks [82.21746840893658]
We propose a novel approach against end-to-end adversarial attacks developed to fool advanced speech-to-text systems such as DeepSpeech and Lingvo.
Unlike conventional defense approaches, the proposed approach does not directly employ low-level transformations such as autoencoding a given input signal.
Our defense-GAN considerably outperforms conventional defense algorithms in terms of word error rate and sentence level recognition accuracy.
arXiv Detail & Related papers (2020-10-22T00:02:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.