Dressed-state control of effective dipolar interaction between
strongly-coupled solid-state spins
- URL: http://arxiv.org/abs/2203.07610v2
- Date: Tue, 2 May 2023 13:30:02 GMT
- Title: Dressed-state control of effective dipolar interaction between
strongly-coupled solid-state spins
- Authors: Junghyun Lee, Mamiko Tatsuta, Andrew Xu, Erik Bauch, Mark J. H. Ku,
and Ronald. L. Walsworth
- Abstract summary: We present a dressed-state approach to control the effective dipolar coupling between solid-state spins.
We demonstrate this scheme experimentally using two strongly-coupled nitrogen vacancy (NV) centers in diamond.
- Score: 1.2314765641075438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Strong interactions between spins in many-body solid-state quantum system is
a crucial resource for exploring and applying non-classical states. In
particular, electronic spins associated with defects in diamond system are a
leading platform for the study of collective quantum phenomena and for quantum
technology applications. While such solid-state quantum defect systems have the
advantage of scalability and operation under ambient conditions, they face the
key challenge of controlling interactions between the defects spins, since the
defects are spatially fixed inside the host lattice with relative positions
that cannot be well controlled during fabrication. In this work, we present a
dressed-state approach to control the effective dipolar coupling between
solid-state spins; and then demonstrate this scheme experimentally using two
strongly-coupled nitrogen vacancy (NV) centers in diamond. Including Rabi
driving terms between the m$_s$ = 0 and $\pm$1 states in the NV spin
Hamiltonian allows us to turn on and off or tune the effective dipolar coupling
between two NV spins. Through Ramsey spectroscopy, we detect the change of the
effective dipolar field generated by the control NV spin prepared in different
dressed states. To observe the change of interaction dynamics, we then deploy
spin-lock-based polarization transfer measurements via a Hartmann-Hahn matching
condition between two NV spins in different dressed states. We perform
simulations that indicate the promise for this robust scheme to control the
distribution of interaction strengths in strongly-interacting spin systems,
including interaction strength homogenization in a spin ensemble, which can be
a valuable tool for studying non-equilibrium quantum phases and generating high
fidelity multi-spin correlated states for quantum-enhanced sensing.
Related papers
- Reservoir-engineered spin squeezing in quantum hybrid solid-state platforms [0.0]
We propose a scheme to generate long-lived spin squeezing in an ensemble of solid-state qubits interacting with electromagnetic noise emitted by a squeezed solid-state bath.
Results show that the ensemble can exhibit steady-state spin squeezing under suitable conditions, paving the way for the generation of steady-state many-body entanglement in ensembles of solid-state spin defects.
arXiv Detail & Related papers (2024-10-21T02:14:33Z) - Magnon-mediated qubit coupling determined via dissipation measurements [0.0]
Hybrid quantum systems (HQSs) of localized nitrogen-vacancy (NV) centers in diamond and delocalized magnon modes have attracted significant attention.
Here, we experimentally determine the magnon-mediated NV-NV coupling from the magnon-induced self-energy of NV centers.
Our results are quantitatively consistent with a model in which the NV center is coupled to magnons by dipolar interactions.
arXiv Detail & Related papers (2023-08-22T18:00:13Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Manipulating solid-state spin concentration through charge transport [17.571298724628114]
Solid-state spin defects are attractive candidates for developing quantum sensors and simulators.
We develop a wide-field imaging setup integrated with a fast single photon detector array.
We demonstrate the concentration of the dominant spin defects by a factor of 2 while keeping the $T$ increase of the NV center.
arXiv Detail & Related papers (2023-02-24T16:53:28Z) - Multi-Stability in Cavity QED with Spin-Orbit Coupled Bose-Einstein
Condensate [0.0]
We investigate the occurrence of steady-state multi-stability in a cavity system containing spin-orbit coupled Bose-Einstein condensate.
We show the emergence of multi-stable behavior of cavity photon number, which is unlike with previous investigation on cavity-atom systems.
We illustrate the emergence of secondary interface mediated by increasing the mechanical dissipation rate of the pseudo-spin states.
arXiv Detail & Related papers (2023-02-04T11:24:22Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Steering Interchange of Polariton Branches via Coherent and Incoherent
Dynamics [1.9573380763700712]
We propose the control of single- and two-body Jaynes-Cummings systems in a non-equilibrium scenario.
Our findings provide a systematic approach to manipulate polaritons interchange, that we apply to reveal new insights in the transition between Mott Insulator- and Super-like states.
arXiv Detail & Related papers (2020-10-07T16:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.