Incorporating Heterophily into Graph Neural Networks for Graph Classification
- URL: http://arxiv.org/abs/2203.07678v2
- Date: Thu, 9 May 2024 07:46:16 GMT
- Title: Incorporating Heterophily into Graph Neural Networks for Graph Classification
- Authors: Jiayi Yang, Sourav Medya, Wei Ye,
- Abstract summary: Graph Neural Networks (GNNs) often assume strong homophily for graph classification, seldom considering heterophily.
We develop a novel GNN architecture called IHGNN (short for Incorporating Heterophily into Graph Neural Networks)
We empirically validate IHGNN on various graph datasets and demonstrate that it outperforms the state-of-the-art GNNs for graph classification.
- Score: 6.709862924279403
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph Neural Networks (GNNs) often assume strong homophily for graph classification, seldom considering heterophily, which means connected nodes tend to have different class labels and dissimilar features. In real-world scenarios, graphs may have nodes that exhibit both homophily and heterophily. Failing to generalize to this setting makes many GNNs underperform in graph classification. In this paper, we address this limitation by identifying three effective designs and develop a novel GNN architecture called IHGNN (short for Incorporating Heterophily into Graph Neural Networks). These designs include the combination of integration and separation of the ego- and neighbor-embeddings of nodes, adaptive aggregation of node embeddings from different layers, and differentiation between different node embeddings for constructing the graph-level readout function. We empirically validate IHGNN on various graph datasets and demonstrate that it outperforms the state-of-the-art GNNs for graph classification.
Related papers
- Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Break the Wall Between Homophily and Heterophily for Graph
Representation Learning [25.445073413243925]
Homophily and heterophily are intrinsic properties of graphs that describe whether two linked nodes share similar properties.
This work identifies three graph features, including the ego node feature, the aggregated node feature, and the graph structure feature, that are essential for graph representation learning.
It proposes a new GNN model called OGNN that extracts all three graph features and adaptively fuses them to achieve generalizability across the whole spectrum of homophily.
arXiv Detail & Related papers (2022-10-08T19:37:03Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
Graph neural networks (GNNs) have achieved tremendous success on multiple graph-based learning tasks.
We focus on transforming the input graph into a computation graph which contains both proximity and structural information.
We show that adaptively choosing between structure and proximity leads to improved performance under diverse mixing.
arXiv Detail & Related papers (2021-06-11T19:18:34Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
Graph neural networks (GNNs) have been extensively studied for prediction tasks on graphs.
Most GNNs assume local homophily, i.e., strong similarities in localneighborhoods.
We propose a flexible GNN model, which is capable of handling any graphs without beingrestricted by their underlying homophily.
arXiv Detail & Related papers (2021-03-26T00:35:36Z) - Towards Expressive Graph Representation [16.17079730998607]
Graph Neural Network (GNN) aggregates the neighborhood of each node into the node embedding.
We present a theoretical framework to design a continuous injective set function for neighborhood aggregation in GNN.
We validate the proposed expressive GNN for graph classification on multiple benchmark datasets.
arXiv Detail & Related papers (2020-10-12T03:13:41Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.