Modular and Parameter-Efficient Multimodal Fusion with Prompting
- URL: http://arxiv.org/abs/2203.08055v1
- Date: Tue, 15 Mar 2022 16:50:15 GMT
- Title: Modular and Parameter-Efficient Multimodal Fusion with Prompting
- Authors: Sheng Liang, Mengjie Zhao, Hinrich Sch\"utze
- Abstract summary: Our method achieves comparable performance to several other multimodal fusion methods in low-resource settings.
Our method is modular and parameter-efficient for processing tasks involving two or more data modalities.
- Score: 4.2854066077037265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has made impressive progress in large-scale multimodal
pre-training. In the context of the rapid growth of model size, it is necessary
to seek efficient and flexible methods other than finetuning. In this paper, we
propose to use prompt vectors to align the modalities. Our method achieves
comparable performance to several other multimodal fusion methods in
low-resource settings. We further show that our method is modular and
parameter-efficient for processing tasks involving two or more data modalities.
Related papers
- Alt-MoE: Multimodal Alignment via Alternating Optimization of Multi-directional MoE with Unimodal Models [7.134682404460003]
We introduce a novel training framework, Alt-MoE, which employs the Mixture of Experts (MoE) as a unified multi-directional connector across modalities.
Our methodology has been validated on several well-performing uni-modal models.
arXiv Detail & Related papers (2024-09-09T10:40:50Z) - Centering the Value of Every Modality: Towards Efficient and Resilient Modality-agnostic Semantic Segmentation [7.797154022794006]
Recent endeavors regard RGB modality as the center and the others as the auxiliary, yielding an asymmetric architecture with two branches.
We propose a novel method, named MAGIC, that can be flexibly paired with various backbones, ranging from compact to high-performance models.
Our method achieves state-of-the-art performance while reducing the model parameters by 60%.
arXiv Detail & Related papers (2024-07-16T03:19:59Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMA is a generalizable, highly efficient, and modular modality-fusion framework for video reasoning.
We propose a novel progressive multimodal fusion design supported by a lightweight fusion module and modality-sequential training strategy.
We validate our method on 7 video-language reasoning tasks assisted by diverse modalities, including VideoQA and Video-Audio/3D/Touch/Thermal QA.
arXiv Detail & Related papers (2024-02-08T18:27:22Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - BYOM: Building Your Own Multi-Task Model For Free [69.63765907216442]
BYOM-FFT is for merging fully finetuned models, while BYOM-LoRA is for LoRA-finetuned models.
Experiments on computer vision and natural language processing tasks show that the proposed BYOM methods outperform existing merging methods by a large margin.
arXiv Detail & Related papers (2023-10-03T08:39:33Z) - Efficient Multimodal Fusion via Interactive Prompting [62.08292938484994]
Large-scale pre-training has brought unimodal fields such as computer vision and natural language processing to a new era.
We propose an efficient and flexible multimodal fusion method, namely PMF, tailored for fusing unimodally pre-trained transformers.
arXiv Detail & Related papers (2023-04-13T07:31:51Z) - Multimodal E-Commerce Product Classification Using Hierarchical Fusion [0.0]
The proposed method significantly outperformed the unimodal models' performance and the reported performance of similar models on our specific task.
We did experiments with multiple fusing techniques and found, that the best performing technique to combine the individual embedding of the unimodal network is based on combining concatenation and averaging the feature vectors.
arXiv Detail & Related papers (2022-07-07T14:04:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.