Learning to Generate Synthetic Training Data using Gradient Matching and
Implicit Differentiation
- URL: http://arxiv.org/abs/2203.08559v1
- Date: Wed, 16 Mar 2022 11:45:32 GMT
- Title: Learning to Generate Synthetic Training Data using Gradient Matching and
Implicit Differentiation
- Authors: Dmitry Medvedev, Alexander D'yakonov
- Abstract summary: This article explores various data distillation techniques that can reduce the amount of data required to successfully train deep networks.
Inspired by recent ideas, we suggest new data distillation techniques based on generative teaching networks, gradient matching, and the Implicit Function Theorem.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using huge training datasets can be costly and inconvenient. This article
explores various data distillation techniques that can reduce the amount of
data required to successfully train deep networks. Inspired by recent ideas, we
suggest new data distillation techniques based on generative teaching networks,
gradient matching, and the Implicit Function Theorem. Experiments with the
MNIST image classification problem show that the new methods are
computationally more efficient than previous ones and allow to increase the
performance of models trained on distilled data.
Related papers
- Exploring the potential of prototype-based soft-labels data distillation for imbalanced data classification [0.0]
Main goal is to push further the performance of prototype-based soft-labels distillation in terms of classification accuracy.
Experimental studies trace the capability of the method to distill the data, but also the opportunity to act as an augmentation method.
arXiv Detail & Related papers (2024-03-25T19:15:19Z) - Data Distillation Can Be Like Vodka: Distilling More Times For Better
Quality [78.6359306550245]
We argue that using just one synthetic subset for distillation will not yield optimal generalization performance.
PDD synthesizes multiple small sets of synthetic images, each conditioned on the previous sets, and trains the model on the cumulative union of these subsets.
Our experiments show that PDD can effectively improve the performance of existing dataset distillation methods by up to 4.3%.
arXiv Detail & Related papers (2023-10-10T20:04:44Z) - Distilled Pruning: Using Synthetic Data to Win the Lottery [2.4366811507669124]
This work introduces a novel approach to pruning deep learning models by using distilled data.
Our approach can find sparse, trainableworks up to 5x faster than Iterative Magnitude Pruning at comparable sparsity on CIFAR-10.
The experimental results highlight the potential of using distilled data for resource-efficient neural network pruning, model compression, and neural architecture search.
arXiv Detail & Related papers (2023-07-07T03:07:28Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
We propose to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data.
We present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space.
arXiv Detail & Related papers (2023-05-02T17:59:31Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Dataset Distillation using Neural Feature Regression [32.53291298089172]
We develop an algorithm for dataset distillation using neural Feature Regression with Pooling (FRePo)
FRePo achieves state-of-the-art performance with an order of magnitude less memory requirement and two orders of magnitude faster training than previous methods.
We show that high-quality distilled data can greatly improve various downstream applications, such as continual learning and membership inference defense.
arXiv Detail & Related papers (2022-06-01T19:02:06Z) - Dataset Distillation by Matching Training Trajectories [75.9031209877651]
We propose a new formulation that optimize our distilled data to guide networks to a similar state as those trained on real data.
Given a network, we train it for several iterations on our distilled data and optimize the distilled data with respect to the distance between the synthetically trained parameters and the parameters trained on real data.
Our method handily outperforms existing methods and also allows us to distill higher-resolution visual data.
arXiv Detail & Related papers (2022-03-22T17:58:59Z) - New Properties of the Data Distillation Method When Working With Tabular
Data [77.34726150561087]
Data distillation is the problem of reducing the volume oftraining data while keeping only the necessary information.
We show that the model trained on distilled samples can outperform the model trained on the original dataset.
arXiv Detail & Related papers (2020-10-19T20:27:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.