Know your sensORs $\unicode{x2013}$ A Modality Study For Surgical Action
Classification
- URL: http://arxiv.org/abs/2203.08674v1
- Date: Wed, 16 Mar 2022 15:01:17 GMT
- Title: Know your sensORs $\unicode{x2013}$ A Modality Study For Surgical Action
Classification
- Authors: Lennart Bastian and Tobias Czempiel and Christian Heiliger and Konrad
Karcz and Ulrich Eck and Benjamin Busam and Nassir Navab
- Abstract summary: The medical community seeks to leverage this wealth of data to develop automated methods to advance interventional care, lower costs, and improve patient outcomes.
Existing datasets from OR room cameras are thus far limited in size or modalities acquired, leaving it unclear which sensor modalities are best suited for tasks such as recognizing surgical action from videos.
This study demonstrates that surgical action recognition performance can vary depending on the image modalities used.
- Score: 39.546197658791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The surgical operating room (OR) presents many opportunities for automation
and optimization. Videos from various sources in the OR are becoming
increasingly available. The medical community seeks to leverage this wealth of
data to develop automated methods to advance interventional care, lower costs,
and improve overall patient outcomes. Existing datasets from OR room cameras
are thus far limited in size or modalities acquired, leaving it unclear which
sensor modalities are best suited for tasks such as recognizing surgical action
from videos. This study demonstrates that surgical action recognition
performance can vary depending on the image modalities used. We perform a
methodical analysis on several commonly available sensor modalities, presenting
two fusion approaches that improve classification performance. The analyses are
carried out on a set of multi-view RGB-D video recordings of 18 laparoscopic
procedures.
Related papers
- VISAGE: Video Synthesis using Action Graphs for Surgery [34.21344214645662]
We introduce the novel task of future video generation in laparoscopic surgery.
Our proposed method, VISAGE, leverages the power of action scene graphs to capture the sequential nature of laparoscopic procedures.
Results of our experiments demonstrate high-fidelity video generation for laparoscopy procedures.
arXiv Detail & Related papers (2024-10-23T10:28:17Z) - Thoracic Surgery Video Analysis for Surgical Phase Recognition [0.08706730566331035]
We analyse and evaluate both frame-based and video clipping-based phase recognition on thoracic surgery dataset consisting of 11 classes of phases.
We show that Masked Video Distillation(MVD) exhibits superior performance, achieving a top-1 accuracy of 72.9%, compared to 52.31% achieved by ImageNet ViT.
arXiv Detail & Related papers (2024-06-13T14:47:57Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
We propose a vision transformer-based approach to learn temporal features directly from sequence-level patches.
We extensively evaluate our approach on two cataract surgery video datasets, Cataract-101 and D99, and demonstrate superior performance compared to various state-of-the-art methods.
arXiv Detail & Related papers (2023-07-20T17:57:04Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - AutoLaparo: A New Dataset of Integrated Multi-tasks for Image-guided
Surgical Automation in Laparoscopic Hysterectomy [42.20922574566824]
We present and release the first integrated dataset with multiple image-based perception tasks to facilitate learning-based automation in hysterectomy surgery.
Our AutoLaparo dataset is developed based on full-length videos of entire hysterectomy procedures.
Specifically, three different yet highly correlated tasks are formulated in the dataset, including surgical workflow recognition, laparoscope motion prediction, and instrument and key anatomy segmentation.
arXiv Detail & Related papers (2022-08-03T13:17:23Z) - Adaptation of Surgical Activity Recognition Models Across Operating
Rooms [10.625208343893911]
We study the generalizability of surgical activity recognition models across operating rooms.
We propose a new domain adaptation method to improve the performance of the surgical activity recognition model.
arXiv Detail & Related papers (2022-07-07T04:41:34Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - The SARAS Endoscopic Surgeon Action Detection (ESAD) dataset: Challenges
and methods [15.833413083110903]
This paper presents ESAD, the first large-scale dataset designed to tackle the problem of surgeon action detection in endoscopic minimally invasive surgery.
The dataset provides bounding box annotation for 21 action classes on real endoscopic video frames captured during prostatectomy, and was used as the basis of a recent MIDL 2020 challenge.
arXiv Detail & Related papers (2021-04-07T15:11:51Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.