$\ell_p$ Slack Norm Support Vector Data Description
- URL: http://arxiv.org/abs/2203.08932v1
- Date: Wed, 16 Mar 2022 20:38:37 GMT
- Title: $\ell_p$ Slack Norm Support Vector Data Description
- Authors: Shervin R. Arashloo
- Abstract summary: We generalise this modelling formalism to a general $ell_p$-norm ($pgeq1$) slack penalty function.
By virtue of an $ell_p$ slack norm, the proposed approach enables formulating a non-linear cost function with respect to slacks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The support vector data description (SVDD) approach serves as a de facto
standard for one-class classification where the learning task entails inferring
the smallest hyper-sphere to enclose target objects while linearly penalising
any errors/slacks via an $\ell_1$-norm penalty term. In this study, we
generalise this modelling formalism to a general $\ell_p$-norm ($p\geq1$) slack
penalty function. By virtue of an $\ell_p$ slack norm, the proposed approach
enables formulating a non-linear cost function with respect to slacks. From a
dual problem perspective, the proposed method introduces a sparsity-inducing
dual norm into the objective function, and thus, possesses a higher capacity to
tune into the inherent sparsity of the problem for enhanced descriptive
capability. A theoretical analysis based on Rademacher complexities
characterises the generalisation performance of the proposed approach in terms
of parameter $p$ while the experimental results on several datasets confirm the
merits of the proposed method compared to other alternatives.
Related papers
- Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
We introduce a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t sim p, x'_t sim q)$ are observed over time.
We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
arXiv Detail & Related papers (2023-11-03T13:20:11Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - Improved Regret for Efficient Online Reinforcement Learning with Linear
Function Approximation [69.0695698566235]
We study reinforcement learning with linear function approximation and adversarially changing cost functions.
We present a computationally efficient policy optimization algorithm for the challenging general setting of unknown dynamics and bandit feedback.
arXiv Detail & Related papers (2023-01-30T17:26:39Z) - spred: Solving $L_1$ Penalty with SGD [6.2255027793924285]
We propose to minimize a differentiable objective with $L_$ using a simple reparametrization.
We prove that the reparametrization trick is completely benign" with an exactiable non function.
arXiv Detail & Related papers (2022-10-03T20:07:51Z) - Robust Linear Predictions: Analyses of Uniform Concentration, Fast Rates
and Model Misspecification [16.0817847880416]
We offer a unified framework that includes a broad variety of linear prediction problems on a Hilbert space.
We show that for misspecification level $epsilon$, these estimators achieve an error rate of $O(maxleft|mathcalO|1/2n-1/2, |mathcalI|1/2n-1 right+epsilon)$, matching the best-known rates in literature.
arXiv Detail & Related papers (2022-01-06T08:51:08Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
This paper presents a convex-analytic framework to learn from data.
We show that a triangular convexity decomposition is guaranteed by a transform of the corresponding to its upper part.
arXiv Detail & Related papers (2021-09-17T17:46:12Z) - On the Treatment of Optimization Problems with L1 Penalty Terms via
Multiobjective Continuation [0.0]
We present a novel algorithm that allows us to gain detailed insight into the effects of sparsity in linear and nonlinear optimization.
Our method can be seen as a generalization of well-known homotopy methods for linear regression problems to the nonlinear case.
arXiv Detail & Related papers (2020-12-14T13:00:50Z) - On the Adversarial Robustness of LASSO Based Feature Selection [72.54211869067979]
In the considered model, there is a malicious adversary who can observe the whole dataset, and then will carefully modify the response values or the feature matrix.
We formulate the modification strategy of the adversary as a bi-level optimization problem.
Numerical examples with synthetic and real data illustrate that our method is efficient and effective.
arXiv Detail & Related papers (2020-10-20T05:51:26Z) - Estimating Principal Components under Adversarial Perturbations [25.778123431786653]
We study a natural model of robustness for high-dimensional statistical estimation problems.
Our model is motivated by emerging paradigms such as low precision machine learning and adversarial training.
arXiv Detail & Related papers (2020-05-31T20:27:19Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
This paper establishes a precise high-dimensional theory for boosting on separable data.
Under a class of statistical models, we provide an exact analysis of the universality error of boosting.
We also explicitly pin down the relation between the boosting test error and the optimal Bayes error.
arXiv Detail & Related papers (2020-02-05T00:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.