RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction
- URL: http://arxiv.org/abs/2203.09101v1
- Date: Thu, 17 Mar 2022 05:55:14 GMT
- Title: RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction
- Authors: Yew Ken Chia, Lidong Bing, Soujanya Poria, Luo Si
- Abstract summary: We introduce the task setting of Zero-Shot Relation Triplet Extraction (ZeroRTE)
Given an input sentence, each extracted triplet consists of the head entity, relation label, and tail entity where the relation label is not seen at the training stage.
We propose to synthesize relation examples by prompting language models to generate structured texts.
- Score: 65.4337085607711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the importance of relation extraction in building and representing
knowledge, less research is focused on generalizing to unseen relations types.
We introduce the task setting of Zero-Shot Relation Triplet Extraction
(ZeroRTE) to encourage further research in low-resource relation extraction
methods. Given an input sentence, each extracted triplet consists of the head
entity, relation label, and tail entity where the relation label is not seen at
the training stage. To solve ZeroRTE, we propose to synthesize relation
examples by prompting language models to generate structured texts. Concretely,
we unify language model prompts and structured text approaches to design a
structured prompt template for generating synthetic relation samples when
conditioning on relation label prompts (RelationPrompt). To overcome the
limitation for extracting multiple relation triplets in a sentence, we design a
novel Triplet Search Decoding method. Experiments on FewRel and Wiki-ZSL
datasets show the efficacy of RelationPrompt for the ZeroRTE task and zero-shot
relation classification. Our code and data are available at
github.com/declare-lab/RelationPrompt.
Related papers
- Consistency Guided Knowledge Retrieval and Denoising in LLMs for
Zero-shot Document-level Relation Triplet Extraction [43.50683283748675]
Document-level Relation Triplet Extraction (DocRTE) is a fundamental task in information systems that aims to simultaneously extract entities with semantic relations from a document.
Existing methods heavily rely on a substantial amount of fully labeled data.
Recent advanced Large Language Models (LLMs), such as ChatGPT and LLaMA, exhibit impressive long-text generation capabilities.
arXiv Detail & Related papers (2024-01-24T17:04:28Z) - Prompt Based Tri-Channel Graph Convolution Neural Network for Aspect
Sentiment Triplet Extraction [63.0205418944714]
Aspect Sentiment Triplet Extraction (ASTE) is an emerging task to extract a given sentence's triplets, which consist of aspects, opinions, and sentiments.
Recent studies tend to address this task with a table-filling paradigm, wherein word relations are encoded in a two-dimensional table.
We propose a novel model for the ASTE task, called Prompt-based Tri-Channel Graph Convolution Neural Network (PT-GCN), which converts the relation table into a graph to explore more comprehensive relational information.
arXiv Detail & Related papers (2023-12-18T12:46:09Z) - Zero-shot Triplet Extraction by Template Infilling [13.295751492744081]
Triplet extraction aims to extract pairs of entities and their corresponding relations from unstructured text.
We show that by reducing triplet extraction to a template infilling task over a pre-trained language model (LM), we can equip the extraction model with zero-shot learning capabilities.
We propose a novel framework, ZETT, that aligns the task objective to the pre-training objective of generative transformers to generalize to unseen relations.
arXiv Detail & Related papers (2022-12-21T00:57:24Z) - PCRED: Zero-shot Relation Triplet Extraction with Potential Candidate
Relation Selection and Entity Boundary Detection [11.274924966891842]
Zero-shot relation triplet extraction (ZeroRTE) aims to extract relation triplets from unstructured texts.
Previous state-of-the-art method handles this challenging task by leveraging pretrained language models to generate data as additional training samples.
We tackle this task from a new perspective and propose a novel method named PCRED for ZeroRTE with Potential Candidate Relation selection and Entity boundary Detection.
arXiv Detail & Related papers (2022-11-26T04:27:31Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
We study the problem of extracting N-ary relations from scientific articles.
Our proposed method ReSel decomposes this task into a two-stage procedure.
Our experiments on three scientific information extraction datasets show that ReSel outperforms state-of-the-art baselines significantly.
arXiv Detail & Related papers (2022-10-26T02:28:02Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
This work focuses on extracting explanations that indicate that a relation exists while using only partially labeled data.
We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that explains and ranks relations.
We find that about 90% of the time, human annotators prefer D-REX's explanations over a strong BERT-based joint relation extraction and explanation model.
arXiv Detail & Related papers (2021-09-10T22:30:48Z) - A Cascade Dual-Decoder Model for Joint Entity and Relation Extraction [18.66493402386152]
We propose an effective cascade dual-decoder method to extract overlapping relational triples.
Our approach is straightforward and it includes a text-specific relation decoder and a relation-corresponded entity decoder.
We conducted experiments on a real-world open-pit mine dataset and two public datasets to verify the method's generalizability.
arXiv Detail & Related papers (2021-06-27T07:42:05Z) - Relation Clustering in Narrative Knowledge Graphs [71.98234178455398]
relational sentences in the original text are embedded (with SBERT) and clustered in order to merge together semantically similar relations.
Preliminary tests show that such clustering might successfully detect similar relations, and provide a valuable preprocessing for semi-supervised approaches.
arXiv Detail & Related papers (2020-11-27T10:43:04Z) - TDRE: A Tensor Decomposition Based Approach for Relation Extraction [6.726803950083593]
Extracting entity pairs along with relation types from unstructured texts is a fundamental subtask of information extraction.
In this paper, we first model the final triplet extraction result as a three-order tensor of word-to-word pairs enriched with each relation type.
The proposed method outperforms existing strong baselines.
arXiv Detail & Related papers (2020-10-15T05:29:34Z) - Extractive Summarization as Text Matching [123.09816729675838]
This paper creates a paradigm shift with regard to the way we build neural extractive summarization systems.
We formulate the extractive summarization task as a semantic text matching problem.
We have driven the state-of-the-art extractive result on CNN/DailyMail to a new level (44.41 in ROUGE-1)
arXiv Detail & Related papers (2020-04-19T08:27:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.