Human Gait Analysis using Gait Energy Image
- URL: http://arxiv.org/abs/2203.09549v1
- Date: Thu, 17 Mar 2022 18:16:46 GMT
- Title: Human Gait Analysis using Gait Energy Image
- Authors: Sagor Chandro Bakchy, Md. Rabiul Islam, M. Rasel Mahmud, Faisal Imran
- Abstract summary: Gait Energy Image (GEI) representation of gait contains all information of each image in one gait cycle.
GEI representation of gait contains all information of each image in one gait cycle and requires less storage and low processing speed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gait recognition is one of the most recent emerging techniques of human
biometric which can be used for security based purposes having unobtrusive
learning method. In comparison with other bio-metrics gait analysis has some
special security features. Most of the biometric technique uses sequential
template based component analysis for recognition. Comparing with those
methods, we proposed a developed technique for gait identification using the
feature Gait Energy Image (GEI). GEI representation of gait contains all
information of each image in one gait cycle and requires less storage and low
processing speed. As only one image is enough to store the necessary
information in GEI feature recognition process is very easier than any other
feature for gait recognition. Gait recognition has some limitations in
recognition process like viewing angle variation, walking speed, clothes,
carrying load etc. Our proposed method in the paper compares the recognition
performance with template based feature extraction which needs to process each
frame in the cycle. We use GEI which gives relatively all information about all
the frames in the cycle and results in better performance than other feature of
gait analysis.
Related papers
- GaitFormer: Learning Gait Representations with Noisy Multi-Task Learning [4.831663144935878]
We propose DenseGait, the largest dataset for pretraining gait analysis systems containing 217K anonymized tracklets.
We also propose GaitFormer, a transformer-based model that achieves 92.5% accuracy on CASIA-B and 85.33% on FVG.
arXiv Detail & Related papers (2023-10-30T10:28:44Z) - Distillation-guided Representation Learning for Unconstrained Gait Recognition [50.0533243584942]
We propose a framework, termed GAit DEtection and Recognition (GADER), for human authentication in challenging outdoor scenarios.
GADER builds discriminative features through a novel gait recognition method, where only frames containing gait information are used.
We evaluate our method on multiple State-of-The-Arts(SoTA) gait baselines and demonstrate consistent improvements on indoor and outdoor datasets.
arXiv Detail & Related papers (2023-07-27T01:53:57Z) - GaitGS: Temporal Feature Learning in Granularity and Span Dimension for Gait Recognition [34.07501669897291]
GaitGS is a framework that aggregates temporal features simultaneously in both granularity and span dimensions.
Our method demonstrates state-of-the-art performance, achieving Rank-1 accuracy of 98.2%, 96.5%, and 89.7% on two datasets.
arXiv Detail & Related papers (2023-05-31T09:48:25Z) - Exploring Incompatible Knowledge Transfer in Few-shot Image Generation [107.81232567861117]
Few-shot image generation learns to generate diverse and high-fidelity images from a target domain using a few reference samples.
Existing F SIG methods select, preserve and transfer prior knowledge from a source generator to learn the target generator.
We propose knowledge truncation, which is a complementary operation to knowledge preservation and is implemented by a lightweight pruning-based method.
arXiv Detail & Related papers (2023-04-15T14:57:15Z) - Multi-Modal Human Authentication Using Silhouettes, Gait and RGB [59.46083527510924]
Whole-body-based human authentication is a promising approach for remote biometrics scenarios.
We propose Dual-Modal Ensemble (DME), which combines both RGB and silhouette data to achieve more robust performances for indoor and outdoor whole-body based recognition.
Within DME, we propose GaitPattern, which is inspired by the double helical gait pattern used in traditional gait analysis.
arXiv Detail & Related papers (2022-10-08T15:17:32Z) - Self-supervised Image-specific Prototype Exploration for Weakly
Supervised Semantic Segmentation [72.33139350241044]
Weakly Supervised Semantic COCO (WSSS) based on image-level labels has attracted much attention due to low annotation costs.
We propose a Self-supervised Image-specific Prototype Exploration (SIPE) that consists of an Image-specific Prototype Exploration (IPE) and a General-Specific Consistency (GSC) loss.
Our SIPE achieves new state-of-the-art performance using only image-level labels.
arXiv Detail & Related papers (2022-03-06T09:01:03Z) - Robust Analytics for Video-Based Gait Biometrics [1.066048003460524]
This thesis discusses both hard and soft biometric characteristics of gait.
It shows how to identify gender based on gait alone through the Posed-Based Voting scheme.
The mapping can be improved in a smaller population using Bayesian Thresholding.
arXiv Detail & Related papers (2021-11-12T11:47:35Z) - Iris Recognition Based on SIFT Features [63.07521951102555]
We use the Scale Invariant Feature Transformation (SIFT) for recognition using iris images.
We extract characteristic SIFT feature points in scale space and perform matching based on the texture information around the feature points using the SIFT operator.
We also show the complement between the SIFT approach and a popular matching approach based on transformation to polar coordinates and Log-Gabor wavelets.
arXiv Detail & Related papers (2021-10-30T04:55:33Z) - Gait-based Human Identification through Minimum Gait-phases and Sensors [0.45857634932098795]
We present a gait identification technique based on temporal and descriptive statistic parameters of different gait phases as the features.
It is possible to achieve high accuracy of over 95.5 percent by monitoring a single phase of the whole gait cycle through only a single sensor.
It was also shown that the proposed methodology could be used to achieve 100 percent identification accuracy when the whole gait cycle was monitored through pelvis and foot sensors combined.
arXiv Detail & Related papers (2021-10-15T02:09:45Z) - Cloth-Changing Person Re-identification from A Single Image with Gait
Prediction and Regularization [65.50321170655225]
We introduce Gait recognition as an auxiliary task to drive the Image ReID model to learn cloth-agnostic representations.
Experiments on image-based Cloth-Changing ReID benchmarks, e.g., LTCC, PRCC, Real28, and VC-Clothes, demonstrate that GI-ReID performs favorably against the state-of-the-arts.
arXiv Detail & Related papers (2021-03-29T12:10:50Z) - SelfGait: A Spatiotemporal Representation Learning Method for
Self-supervised Gait Recognition [24.156710529672775]
Gait recognition plays a vital role in human identification since gait is a unique biometric feature that can be perceived at a distance.
Existing gait recognition methods can learn gait features from gait sequences in different ways, but the performance of gait recognition suffers from labeled data.
We propose a self-supervised gait recognition method, termed SelfGait, which takes advantage of the massive, diverse, unlabeled gait data as a pre-training process.
arXiv Detail & Related papers (2021-03-27T05:15:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.