Analysis of quantum decay law: Is quantum tunneling really exponential?
- URL: http://arxiv.org/abs/2203.10134v2
- Date: Sat, 28 Jan 2023 08:15:39 GMT
- Title: Analysis of quantum decay law: Is quantum tunneling really exponential?
- Authors: M. S. Hosseini-Ghalehni, B. Azadegan, S. A. Alavi
- Abstract summary: The exponential decay law is well established since its first derivation in 1928.
Some experimental and theoretical indications for non-exponential decay have been documented.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential decay law is well established since its first derivation in
1928, however it is not exact but only an approximate description. In recent
years some experimental and theoretical indications for non-exponential decay
have been documented. First we solve analytically the time-dependent
Schr\"odinger equation in one dimension for a potential consisting of an
infinite wall plus a rectangular barrier with finite width and also a cut
harmonic oscillator potential by considering it as a sequence of square
potentials. Then using the staggered Leap-Frog method, we solve the
time-dependent Schr\"odinger equation for the cut harmonic oscillator
potential. In both methods, time dependence of the survival probability of the
particle and the decay parameter {\lambda} are analyzed. The results exhibit
non-exponential behavior for survival probability at short and intermediate
times.
Related papers
- Fluctuations and Persistence in Quantum Diffusion on Regular Lattices [7.218054628599005]
We investigate quantum persistence by analyzing amplitude and phase fluctuations of the wave function governed by the time-dependent free-particle Schr"odinger equation.
In analogy with classical diffusion, the persistence probability is defined as the probability that the local (amplitude or phase) fluctuations have not changed sign up to time $t$.
arXiv Detail & Related papers (2024-02-08T19:46:56Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - A unified approach to the nonlinear Rabi models [0.0]
An analytical approach is proposed and applied to study the two-photon, two-mode and intensity-dependent Rabi models.
This work paves a way for the analysis of the novel physics in nonlinear quantum optics.
arXiv Detail & Related papers (2022-06-20T14:29:14Z) - Multichannel decay law [0.0]
It is well known, both theoretically and experimentally, that the survival probability for an unstable quantum state, formed at $t=0,$ is not a simple exponential function.
In this work, the general expression for the probability that an unstable state decays into a certain $i$-th channel between the initial time $t=0$ and an arbitrary $t>0$ is provided.
Quite remarkably, these deviations may last relatively long, thus making them potentially interesting in applications.
arXiv Detail & Related papers (2021-08-17T19:02:53Z) - Quantum dots as a probe of fundamental physics: Deviation from
exponential decay law [0.0]
We explore a possibility of measuring deviation from the exponential decay law in pure quantum systems.
It is found that electron tunneling from resonance state confined in man-made atoms, quantum dots, has a good chance of detecting the deviation.
arXiv Detail & Related papers (2021-06-30T06:20:21Z) - Quantum dynamics on a lossy non-Hermitian lattice [12.373452169290541]
We investigate quantum dynamics of a quantum walker on a finite bipartite non-Hermitian lattice.
Quantum walker initially located on one of the non-leaky sites will finally disappear after a length of evolution time.
The intriguing behavior of the resultant decay probability distribution is intimately related to the existence and specific property of edge states.
arXiv Detail & Related papers (2020-11-15T03:51:13Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.