Sequence-to-Sequence Knowledge Graph Completion and Question Answering
- URL: http://arxiv.org/abs/2203.10321v1
- Date: Sat, 19 Mar 2022 13:01:49 GMT
- Title: Sequence-to-Sequence Knowledge Graph Completion and Question Answering
- Authors: Apoorv Saxena, Adrian Kochsiek, Rainer Gemulla
- Abstract summary: We show that an off-the-shelf encoder-decoder Transformer model can serve as a scalable and versatile KGE model.
We achieve this by posing KG link prediction as a sequence-to-sequence task and exchange the triple scoring approach taken by prior KGE methods with autoregressive decoding.
- Score: 8.207403859762044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graph embedding (KGE) models represent each entity and relation of
a knowledge graph (KG) with low-dimensional embedding vectors. These methods
have recently been applied to KG link prediction and question answering over
incomplete KGs (KGQA). KGEs typically create an embedding for each entity in
the graph, which results in large model sizes on real-world graphs with
millions of entities. For downstream tasks these atomic entity representations
often need to be integrated into a multi stage pipeline, limiting their
utility. We show that an off-the-shelf encoder-decoder Transformer model can
serve as a scalable and versatile KGE model obtaining state-of-the-art results
for KG link prediction and incomplete KG question answering. We achieve this by
posing KG link prediction as a sequence-to-sequence task and exchange the
triple scoring approach taken by prior KGE methods with autoregressive
decoding. Such a simple but powerful method reduces the model size up to 98%
compared to conventional KGE models while keeping inference time tractable.
After finetuning this model on the task of KGQA over incomplete KGs, our
approach outperforms baselines on multiple large-scale datasets without
extensive hyperparameter tuning.
Related papers
- Distill-SynthKG: Distilling Knowledge Graph Synthesis Workflow for Improved Coverage and Efficiency [59.6772484292295]
Knowledge graphs (KGs) generated by large language models (LLMs) are increasingly valuable for Retrieval-Augmented Generation (RAG) applications.
Existing KG extraction methods rely on prompt-based approaches, which are inefficient for processing large-scale corpora.
We propose SynthKG, a multi-step, document-level synthesis KG workflow based on LLMs.
We also design a novel graph-based retrieval framework for RAG.
arXiv Detail & Related papers (2024-10-22T00:47:54Z) - Task-Oriented GNNs Training on Large Knowledge Graphs for Accurate and Efficient Modeling [5.460112864687281]
This paper proposes KG-TOSA, an approach to automate the TOSG extraction for task-oriented HGNN training on a large Knowledge Graph (KG)
KG-TOSA helps state-of-the-art HGNN methods reduce training time and memory usage by up to 70% while improving the model performance, e.g., accuracy and inference time.
arXiv Detail & Related papers (2024-03-09T01:17:26Z) - A Comprehensive Study on Knowledge Graph Embedding over Relational
Patterns Based on Rule Learning [49.09125100268454]
Knowledge Graph Embedding (KGE) has proven to be an effective approach to solving the Knowledge Completion Graph (KGC) task.
Relational patterns are an important factor in the performance of KGE models.
We introduce a training-free method to enhance KGE models' performance over various relational patterns.
arXiv Detail & Related papers (2023-08-15T17:30:57Z) - Separate-and-Aggregate: A Transformer-based Patch Refinement Model for
Knowledge Graph Completion [28.79628925695775]
We propose a novel Transformer-based Patch Refinement Model (PatReFormer) for Knowledge Graph completion.
We conduct experiments on four popular KGC benchmarks, WN18RR, FB15k-237, YAGO37 and DB100K.
The experimental results show significant performance improvement from existing KGC methods on standard KGC evaluation metrics.
arXiv Detail & Related papers (2023-07-11T06:27:13Z) - Schema First! Learn Versatile Knowledge Graph Embeddings by Capturing
Semantics with MASCHInE [3.174882428337821]
Knowledge graph embedding models (KGEMs) have gained considerable traction in recent years.
In this work, we design protographs -- small, modified versions of a KG that leverage RDF/S information.
The learnt protograph-based embeddings are meant to encapsulate the semantics of a KG, and can be leveraged in learning KGEs that, in turn, also better capture semantics.
arXiv Detail & Related papers (2023-06-06T13:22:54Z) - KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models [76.01814380927507]
KGxBoard is an interactive framework for performing fine-grained evaluation on meaningful subsets of the data.
In our experiments, we highlight the findings with the use of KGxBoard, which would have been impossible to detect with standard averaged single-score metrics.
arXiv Detail & Related papers (2022-08-23T15:11:45Z) - GreenKGC: A Lightweight Knowledge Graph Completion Method [32.528770408502396]
GreenKGC aims to discover missing relationships between entities in knowledge graphs.
It consists of three modules: representation learning, feature pruning, and decision learning.
In low dimensions, GreenKGC can outperform SOTA methods in most datasets.
arXiv Detail & Related papers (2022-08-19T03:33:45Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - ExpressivE: A Spatio-Functional Embedding For Knowledge Graph Completion [78.8942067357231]
ExpressivE embeds pairs of entities as points and relations as hyper-parallelograms in the virtual triple space.
We show that ExpressivE is competitive with state-of-the-art KGEs and even significantly outperforms them on W18RR.
arXiv Detail & Related papers (2022-06-08T23:34:39Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
Knowledge graph (KG) question generation (QG) aims to generate natural language questions from KGs and target answers.
In this work, we focus on a more realistic setting where we aim to generate questions from a KG subgraph and target answers.
arXiv Detail & Related papers (2020-04-13T15:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.