Vision Transformer with Convolutions Architecture Search
- URL: http://arxiv.org/abs/2203.10435v1
- Date: Sun, 20 Mar 2022 02:59:51 GMT
- Title: Vision Transformer with Convolutions Architecture Search
- Authors: Haichao Zhang, Kuangrong Hao, Witold Pedrycz, Lei Gao, Xuesong Tang,
and Bing Wei
- Abstract summary: We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
- Score: 72.70461709267497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers exhibit great advantages in handling computer vision tasks. They
model image classification tasks by utilizing a multi-head attention mechanism
to process a series of patches consisting of split images. However, for complex
tasks, Transformer in computer vision not only requires inheriting a bit of
dynamic attention and global context, but also needs to introduce features
concerning noise reduction, shifting, and scaling invariance of objects.
Therefore, here we take a step forward to study the structural characteristics
of Transformer and convolution and propose an architecture search method-Vision
Transformer with Convolutions Architecture Search (VTCAS). The high-performance
backbone network searched by VTCAS introduces the desirable features of
convolutional neural networks into the Transformer architecture while
maintaining the benefits of the multi-head attention mechanism. The searched
block-based backbone network can extract feature maps at different scales.
These features are compatible with a wider range of visual tasks, such as image
classification (32 M parameters, 82.0% Top-1 accuracy on ImageNet-1K) and
object detection (50.4% mAP on COCO2017). The proposed topology based on the
multi-head attention mechanism and CNN adaptively associates relational
features of pixels with multi-scale features of objects. It enhances the
robustness of the neural network for object recognition, especially in the low
illumination indoor scene.
Related papers
- NiNformer: A Network in Network Transformer with Token Mixing as a Gating Function Generator [1.3812010983144802]
The attention mechanism was utilized in computer vision as the Vision Transformer ViT.
It comes with the drawback of being expensive and requiring datasets of considerable size for effective optimization.
This paper introduces a new computational block as an alternative to the standard ViT block that reduces the compute burdens.
arXiv Detail & Related papers (2024-03-04T19:08:20Z) - ReViT: Enhancing Vision Transformers Feature Diversity with Attention Residual Connections [8.372189962601077]
Vision Transformer (ViT) self-attention mechanism is characterized by feature collapse in deeper layers.
We propose a novel residual attention learning method for improving ViT-based architectures.
arXiv Detail & Related papers (2024-02-17T14:44:10Z) - ClusVPR: Efficient Visual Place Recognition with Clustering-based
Weighted Transformer [13.0858576267115]
We present ClusVPR, a novel approach that tackles the specific issues of redundant information in duplicate regions and representations of small objects.
ClusVPR introduces a unique paradigm called Clustering-based weighted Transformer Network (CWTNet)
We also introduce the optimized-VLAD layer that significantly reduces the number of parameters and enhances model efficiency.
arXiv Detail & Related papers (2023-10-06T09:01:15Z) - Vision Transformer with Quadrangle Attention [76.35955924137986]
We propose a novel quadrangle attention (QA) method that extends the window-based attention to a general quadrangle formulation.
Our method employs an end-to-end learnable quadrangle regression module that predicts a transformation matrix to transform default windows into target quadrangles.
We integrate QA into plain and hierarchical vision transformers to create a new architecture named QFormer, which offers minor code modifications and negligible extra computational cost.
arXiv Detail & Related papers (2023-03-27T11:13:50Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
We propose the Structure Information Modeling Transformer (SIM-Trans) to incorporate object structure information into transformer for enhancing discriminative representation learning.
The proposed two modules are light-weighted and can be plugged into any transformer network and trained end-to-end easily.
Experiments and analyses demonstrate that the proposed SIM-Trans achieves state-of-the-art performance on fine-grained visual categorization benchmarks.
arXiv Detail & Related papers (2022-08-31T03:00:07Z) - Transformer-Guided Convolutional Neural Network for Cross-View
Geolocalization [20.435023745201878]
We propose a novel Transformer-guided convolutional neural network (TransGCNN) architecture.
Our TransGCNN consists of a CNN backbone extracting feature map from an input image and a Transformer head modeling global context.
Experiments on popular benchmark datasets demonstrate that our model achieves top-1 accuracy of 94.12% and 84.92% on CVUSA and CVACT_val, respectively.
arXiv Detail & Related papers (2022-04-21T08:46:41Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
Recent vision transformers along with self-attention have achieved promising results on various computer vision tasks.
We introduce an effective hybrid architecture for super-resolution (SR) tasks, which leverages local features from CNNs and long-range dependencies captured by transformers.
Our proposed method achieves state-of-the-art SR results on numerous benchmark datasets.
arXiv Detail & Related papers (2022-03-15T06:52:25Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Transformers in Vision: A Survey [101.07348618962111]
Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence.
Transformers require minimal inductive biases for their design and are naturally suited as set-functions.
This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline.
arXiv Detail & Related papers (2021-01-04T18:57:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.