x-enVENT: A Corpus of Event Descriptions with Experiencer-specific
Emotion and Appraisal Annotations
- URL: http://arxiv.org/abs/2203.10909v1
- Date: Mon, 21 Mar 2022 12:02:06 GMT
- Title: x-enVENT: A Corpus of Event Descriptions with Experiencer-specific
Emotion and Appraisal Annotations
- Authors: Enrica Troiano and Laura Oberl\"ander and Maximilian Wegge and Roman
Klinger
- Abstract summary: We argue that a classification setup for emotion analysis should be performed in an integrated manner, including the different semantic roles that participate in an emotion episode.
Based on appraisal theories in psychology, we compile an English corpus of written event descriptions.
The descriptions depict emotion-eliciting circumstances, and they contain mentions of people who responded emotionally.
- Score: 13.324006587838523
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Emotion classification is often formulated as the task to categorize texts
into a predefined set of emotion classes. So far, this task has been the
recognition of the emotion of writers and readers, as well as that of entities
mentioned in the text. We argue that a classification setup for emotion
analysis should be performed in an integrated manner, including the different
semantic roles that participate in an emotion episode. Based on appraisal
theories in psychology, which treat emotions as reactions to events, we compile
an English corpus of written event descriptions. The descriptions depict
emotion-eliciting circumstances, and they contain mentions of people who
responded emotionally. We annotate all experiencers, including the original
author, with the emotions they likely felt. In addition, we link them to the
event they found salient (which can be different for different experiencers in
a text) by annotating event properties, or appraisals (e.g., the perceived
event undesirability, the uncertainty of its outcome). Our analysis reveals
patterns in the co-occurrence of people's emotions in interaction. Hence, this
richly-annotated resource provides useful data to study emotions and event
evaluations from the perspective of different roles, and it enables the
development of experiencer-specific emotion and appraisal classification
systems.
Related papers
- Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
We investigate how well human-annotated emotion triggers correlate with features deemed salient in their prediction of emotions.
Using EmoTrigger, we evaluate the ability of large language models to identify emotion triggers.
Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection.
arXiv Detail & Related papers (2023-11-16T06:20:13Z) - Where are We in Event-centric Emotion Analysis? Bridging Emotion Role
Labeling and Appraisal-based Approaches [10.736626320566707]
The term emotion analysis in text subsumes various natural language processing tasks.
We argue that emotions and events are related in two ways.
We discuss how to incorporate psychological appraisal theories in NLP models to interpret events.
arXiv Detail & Related papers (2023-09-05T09:56:29Z) - Automatic Emotion Experiencer Recognition [12.447379545167642]
We show that experiencer detection in text is a challenging task, with a precision of.82 and a recall of.56 (F1 =.66)
We show that experiencer detection in text is a challenging task, with a precision of.82 and a recall of.56 (F1 =.66)
arXiv Detail & Related papers (2023-05-26T08:33:28Z) - Experiencer-Specific Emotion and Appraisal Prediction [13.324006587838523]
Emotion classification in NLP assigns emotions to texts, such as sentences or paragraphs.
We focus on the experiencers of events, and assign an emotion (if any holds) to each of them.
Our experiencer-aware models of emotions and appraisals outperform the experiencer-agnostic baselines.
arXiv Detail & Related papers (2022-10-21T16:04:27Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
We propose a novel formulation that measures the relative difference between the speech samples of different emotions.
We then incorporate our formulation into a sequence-to-sequence emotional text-to-speech framework.
At run-time, we control the model to produce the desired emotion mixture by manually defining an emotion attribute vector.
arXiv Detail & Related papers (2022-08-11T15:45:58Z) - Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus
Creation, Annotation Reliability, and Prediction [14.555520007106656]
In psychology, the class of emotion theories known as appraisal theories aims at explaining the link between events and emotions.
We analyze the suitability of appraisal theories for emotion analysis in text with the goal of understanding if appraisal concepts can reliably be reconstructed by annotators.
Our comparison of text classification methods to human annotators shows that both can reliably detect emotions and appraisals with similar performance.
arXiv Detail & Related papers (2022-06-10T17:20:17Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
Emotional voice conversion (EVC) seeks to convert the emotional state of an utterance while preserving the linguistic content and speaker identity.
In this paper, we aim to explicitly characterize and control the intensity of emotion.
We propose to disentangle the speaker style from linguistic content and encode the speaker style into a style embedding in a continuous space that forms the prototype of emotion embedding.
arXiv Detail & Related papers (2022-01-10T02:11:25Z) - Emotion Recognition under Consideration of the Emotion Component Process
Model [9.595357496779394]
We use the emotion component process model (CPM) by Scherer (2005) to explain emotion communication.
CPM states that emotions are a coordinated process of various subcomponents, in reaction to an event, namely the subjective feeling, the cognitive appraisal, the expression, a physiological bodily reaction, and a motivational action tendency.
We find that emotions on Twitter are predominantly expressed by event descriptions or subjective reports of the feeling, while in literature, authors prefer to describe what characters do, and leave the interpretation to the reader.
arXiv Detail & Related papers (2021-07-27T15:53:25Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
We propose a well-grounded circular-structured representation to utilize the prior knowledge for visual emotion distribution learning.
To be specific, we first construct an Emotion Circle to unify any emotional state within it.
On the proposed Emotion Circle, each emotion distribution is represented with an emotion vector, which is defined with three attributes.
arXiv Detail & Related papers (2021-06-23T14:53:27Z) - Emotion Carrier Recognition from Personal Narratives [74.24768079275222]
Personal Narratives (PNs) are recollections of facts, events, and thoughts from one's own experience.
We propose a novel task for Narrative Understanding: Emotion Carrier Recognition (ECR)
arXiv Detail & Related papers (2020-08-17T17:16:08Z) - Annotation of Emotion Carriers in Personal Narratives [69.07034604580214]
We are interested in the problem of understanding personal narratives (PN) - spoken or written - recollections of facts, events, and thoughts.
In PN, emotion carriers are the speech or text segments that best explain the emotional state of the user.
This work proposes and evaluates an annotation model for identifying emotion carriers in spoken personal narratives.
arXiv Detail & Related papers (2020-02-27T15:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.