Overcoming Oscillations in Quantization-Aware Training
- URL: http://arxiv.org/abs/2203.11086v1
- Date: Mon, 21 Mar 2022 16:07:42 GMT
- Title: Overcoming Oscillations in Quantization-Aware Training
- Authors: Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, Tijmen
Blankevoort
- Abstract summary: When training neural networks with simulated quantization, quantized weights can, rather unexpectedly, oscillate between two grid-points.
We show that it can lead to a significant accuracy degradation due to wrongly estimated batch-normalization statistics.
We propose two novel QAT algorithms to overcome oscillations during training: oscillation dampening and iterative weight freezing.
- Score: 18.28657022169428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When training neural networks with simulated quantization, we observe that
quantized weights can, rather unexpectedly, oscillate between two grid-points.
The importance of this effect and its impact on quantization-aware training are
not well-understood or investigated in literature. In this paper, we delve
deeper into the phenomenon of weight oscillations and show that it can lead to
a significant accuracy degradation due to wrongly estimated batch-normalization
statistics during inference and increased noise during training. These effects
are particularly pronounced in low-bit ($\leq$ 4-bits) quantization of
efficient networks with depth-wise separable layers, such as MobileNets and
EfficientNets. In our analysis we investigate several previously proposed
quantization-aware training (QAT) algorithms and show that most of these are
unable to overcome oscillations. Finally, we propose two novel QAT algorithms
to overcome oscillations during training: oscillation dampening and iterative
weight freezing. We demonstrate that our algorithms achieve state-of-the-art
accuracy for low-bit (3 & 4 bits) weight and activation quantization of
efficient architectures, such as MobileNetV2, MobileNetV3, and EfficentNet-lite
on ImageNet.
Related papers
- Oscillations Make Neural Networks Robust to Quantization [0.16385815610837165]
We show that oscillations in Quantization Aware Training (QAT) are undesirable artifacts caused by the Straight-Through Estimator (STE)
We propose a novel regularization method that induces oscillations to improve quantization.
arXiv Detail & Related papers (2025-02-01T16:39:58Z) - SQUAT: Stateful Quantization-Aware Training in Recurrent Spiking Neural Networks [1.0923877073891446]
Spiking neural networks (SNNs) share the goal of enhancing efficiency, but adopt an 'event-driven' approach to reduce the power consumption of neural network inference.
This paper introduces two QAT schemes for stateful neurons: (i) a uniform quantization strategy, an established method for weight quantization, and (ii) threshold-centered quantization.
Our results show that increasing the density of quantization levels around the firing threshold improves accuracy across several benchmark datasets.
arXiv Detail & Related papers (2024-04-15T03:07:16Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Designing strong baselines for ternary neural network quantization
through support and mass equalization [7.971065005161565]
Deep neural networks (DNNs) offer the highest performance in a wide range of applications in computer vision.
This computational burden can be dramatically reduced by quantizing floating point values to ternary values.
We show experimentally that our approach allows to significantly improve the performance of ternary quantization through a variety of scenarios.
arXiv Detail & Related papers (2023-06-30T07:35:07Z) - BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
Quantization aims to transform high-precision weights and activations of a given neural network into low-precision weights/activations for reduced memory usage and computation.
Extreme quantization (1-bit weight/1-bit activations) of compactly-designed backbone architectures results in severe performance degeneration.
This paper proposes a novel Quantization-Aware Training (QAT) method that can effectively alleviate performance degeneration.
arXiv Detail & Related papers (2022-07-04T13:25:49Z) - A White Paper on Neural Network Quantization [20.542729144379223]
We introduce state-of-the-art algorithms for mitigating the impact of quantization noise on the network's performance.
We consider two main classes of algorithms: Post-Training Quantization (PTQ) and Quantization-Aware-Training (QAT)
arXiv Detail & Related papers (2021-06-15T17:12:42Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
This paper proposes two novel techniques to train deep convolutional neural networks with low bit-width weights and activations.
First, to obtain low bit-width weights, most existing methods obtain the quantized weights by performing quantization on the full-precision network weights.
Second, to obtain low bit-width activations, existing works consider all channels equally.
arXiv Detail & Related papers (2020-12-26T15:21:18Z) - Recurrence of Optimum for Training Weight and Activation Quantized
Networks [4.103701929881022]
Training deep learning models with low-precision weights and activations involves a demanding optimization task.
We show how to overcome the nature of network quantization.
We also show numerical evidence of the recurrence phenomenon of weight evolution in training quantized deep networks.
arXiv Detail & Related papers (2020-12-10T09:14:43Z) - Where Should We Begin? A Low-Level Exploration of Weight Initialization
Impact on Quantized Behaviour of Deep Neural Networks [93.4221402881609]
We present an in-depth, fine-grained ablation study of the effect of different weights initialization on the final distributions of weights and activations of different CNN architectures.
To our best knowledge, we are the first to perform such a low-level, in-depth quantitative analysis of weights initialization and its effect on quantized behaviour.
arXiv Detail & Related papers (2020-11-30T06:54:28Z) - A Statistical Framework for Low-bitwidth Training of Deep Neural
Networks [70.77754244060384]
Fully quantized training (FQT) uses low-bitwidth hardware by quantizing the activations, weights, and gradients of a neural network model.
One major challenge with FQT is the lack of theoretical understanding, in particular of how gradient quantization impacts convergence properties.
arXiv Detail & Related papers (2020-10-27T13:57:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.