Scalable Video Object Segmentation with Identification Mechanism
- URL: http://arxiv.org/abs/2203.11442v8
- Date: Tue, 28 May 2024 12:22:01 GMT
- Title: Scalable Video Object Segmentation with Identification Mechanism
- Authors: Zongxin Yang, Jiaxu Miao, Yunchao Wei, Wenguan Wang, Xiaohan Wang, Yi Yang,
- Abstract summary: This paper explores the challenges of achieving scalable and effective multi-object modeling for semi-supervised Video Object (VOS)
We present two innovative approaches, Associating Objects with Transformers (AOT) and Associating Objects with Scalable Transformers (AOST)
Our approaches surpass the state-of-the-art competitors and display exceptional efficiency and scalability consistently across all six benchmarks.
- Score: 125.4229430216776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper delves into the challenges of achieving scalable and effective multi-object modeling for semi-supervised Video Object Segmentation (VOS). Previous VOS methods decode features with a single positive object, limiting the learning of multi-object representation as they must match and segment each target separately under multi-object scenarios. Additionally, earlier techniques catered to specific application objectives and lacked the flexibility to fulfill different speed-accuracy requirements. To address these problems, we present two innovative approaches, Associating Objects with Transformers (AOT) and Associating Objects with Scalable Transformers (AOST). In pursuing effective multi-object modeling, AOT introduces the IDentification (ID) mechanism to allocate each object a unique identity. This approach enables the network to model the associations among all objects simultaneously, thus facilitating the tracking and segmentation of objects in a single network pass. To address the challenge of inflexible deployment, AOST further integrates scalable long short-term transformers that incorporate scalable supervision and layer-wise ID-based attention. This enables online architecture scalability in VOS for the first time and overcomes ID embeddings' representation limitations. Given the absence of a benchmark for VOS involving densely multi-object annotations, we propose a challenging Video Object Segmentation in the Wild (VOSW) benchmark to validate our approaches. We evaluated various AOT and AOST variants using extensive experiments across VOSW and five commonly used VOS benchmarks, including YouTube-VOS 2018 & 2019 Val, DAVIS-2017 Val & Test, and DAVIS-2016. Our approaches surpass the state-of-the-art competitors and display exceptional efficiency and scalability consistently across all six benchmarks. Project page: https://github.com/yoxu515/aot-benchmark.
Related papers
- OneVOS: Unifying Video Object Segmentation with All-in-One Transformer
Framework [24.947436083365925]
OneVOS is a novel framework that unifies the core components of VOS with All-in-One Transformer.
OneVOS achieves state-of-the-art performance across 7 datasets, particularly excelling in complex LVOS and MOSE datasets with 70.1% and 66.4% $J & F$, surpassing previous state-of-the-art methods by 4.2% and 7.0%, respectively.
arXiv Detail & Related papers (2024-03-13T16:38:26Z) - Transformer Network for Multi-Person Tracking and Re-Identification in
Unconstrained Environment [0.6798775532273751]
Multi-object tracking (MOT) has profound applications in a variety of fields, including surveillance, sports analytics, self-driving, and cooperative robotics.
We put forward an integrated MOT method that marries object detection and identity linkage within a singular, end-to-end trainable framework.
Our system leverages a robust memory-temporal memory module that retains extensive historical observations and effectively encodes them using an attention-based aggregator.
arXiv Detail & Related papers (2023-12-19T08:15:22Z) - Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation [76.68301884987348]
We propose a simple yet effective approach for self-supervised video object segmentation (VOS)
Our key insight is that the inherent structural dependencies present in DINO-pretrained Transformers can be leveraged to establish robust-temporal segmentation correspondences in videos.
Our method demonstrates state-of-the-art performance across multiple unsupervised VOS benchmarks and excels in complex real-world multi-object video segmentation tasks.
arXiv Detail & Related papers (2023-11-29T18:47:17Z) - Segmenting Moving Objects via an Object-Centric Layered Representation [100.26138772664811]
We introduce an object-centric segmentation model with a depth-ordered layer representation.
We introduce a scalable pipeline for generating synthetic training data with multiple objects.
We evaluate the model on standard video segmentation benchmarks.
arXiv Detail & Related papers (2022-07-05T17:59:43Z) - A Unified Transformer Framework for Group-based Segmentation:
Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection [59.21990697929617]
Humans tend to mine objects by learning from a group of images or several frames of video since we live in a dynamic world.
Previous approaches design different networks on similar tasks separately, and they are difficult to apply to each other.
We introduce a unified framework to tackle these issues, term as UFO (UnifiedObject Framework for Co-Object Framework)
arXiv Detail & Related papers (2022-03-09T13:35:19Z) - Multi-modal Transformers Excel at Class-agnostic Object Detection [105.10403103027306]
We argue that existing methods lack a top-down supervision signal governed by human-understandable semantics.
We develop an efficient and flexible MViT architecture using multi-scale feature processing and deformable self-attention.
We show the significance of MViT proposals in a diverse range of applications.
arXiv Detail & Related papers (2021-11-22T18:59:29Z) - Associating Objects with Transformers for Video Object Segmentation [74.51719591192787]
We propose an Associating Objects with Transformers (AOT) approach to match and decode multiple objects uniformly.
AOT employs an identification mechanism to associate multiple targets into the same high-dimensional embedding space.
We ranked 1st in the 3rd Large-scale Video Object Challenge.
arXiv Detail & Related papers (2021-06-04T17:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.