A Spatial-Temporal Attention Multi-Graph Convolution Network for
Ride-Hailing Demand Prediction Based on Periodicity with Offset
- URL: http://arxiv.org/abs/2203.12505v1
- Date: Wed, 23 Mar 2022 16:03:55 GMT
- Title: A Spatial-Temporal Attention Multi-Graph Convolution Network for
Ride-Hailing Demand Prediction Based on Periodicity with Offset
- Authors: Dong Xing, Chenguang Zhao, Gang Wang
- Abstract summary: Ride-hailing service is becoming a leading part in urban transportation.
To improve the efficiency of ride-hailing service, accurate prediction of transportation demand is a fundamental challenge.
In this paper, we tackle this problem from both aspects of network structure and data-set formulation.
- Score: 9.897431292540393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ride-hailing service is becoming a leading part in urban transportation. To
improve the efficiency of ride-hailing service, accurate prediction of
transportation demand is a fundamental challenge. In this paper, we tackle this
problem from both aspects of network structure and data-set formulation. For
network design, we propose a spatial-temporal attention multi-graph convolution
network (STA-MGCN). A spatial-temporal layer in STA-MGCN is developed to
capture the temporal correlations by temporal attention mechanism and temporal
gate convolution, and the spatial correlations by multigraph convolution. A
feature cluster layer is introduced to learn latent regional functions and to
reduce the computation burden. For the data-set formulation, we develop a novel
approach which considers the transportation feature of periodicity with offset.
Instead of only using history data during the same time period, the history
order demand in forward and backward neighboring time periods from yesterday
and last week are also included. Extensive experiments on the three real-world
datasets of New-York, Chicago and Chengdu show that the proposed algorithm
achieves the state-of-the-art performance for ride-hailing demand prediction.
Related papers
- Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Spatial-temporal traffic modeling with a fusion graph reconstructed by
tensor decomposition [10.104097475236014]
Graph convolutional networks (GCNs) have been widely used in traffic flow prediction.
The design of the spatial-temporal graph adjacency matrix is a key to the success of GCNs.
This paper proposes reconstructing the binary adjacency matrix via tensor decomposition.
arXiv Detail & Related papers (2022-12-12T01:44:52Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Listening to the city, attentively: A Spatio-Temporal Attention Boosted
Autoencoder for the Short-Term Flow Prediction Problem [0.9625436987364908]
We propose a framework, called STREED-Net, with multi-attention (Spatial and Temporal) able to better mining the high-level spatial and temporal features.
We conduct experiments on three real datasets to predict the Inflow and Outflow of the different regions into which the city has been divided.
arXiv Detail & Related papers (2021-03-01T13:17:33Z) - Passenger Mobility Prediction via Representation Learning for Dynamic
Directed and Weighted Graph [31.062303389341317]
We propose a noveltemporal graph attention network namely Gallat (Graph prediction with all attention) as a solution.
In Gallat, by comprehensively incorporating those three intrinsic properties of DDW graphs, we build three attention layers to fully capture the dependencies among different regions across all historical time slots.
We evaluate proposed model on real-world datasets, and our experimental results demonstrate that Gallat outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-04T03:32:01Z) - Spatial-Temporal Dynamic Graph Attention Networks for Ride-hailing
Demand Prediction [3.084885761077852]
Ride-hailing demand prediction can help to pre-allocate resources, improve vehicle utilization and user experiences.
Existing ride-hailing demand prediction methods only assign the same importance to different neighbor regions.
We propose the Spatial-Temporal Dynamic Graph Attention Network (STDGAT), a novel ride-hailing demand prediction method.
arXiv Detail & Related papers (2020-06-07T13:00:19Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.