RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization
- URL: http://arxiv.org/abs/2203.12870v2
- Date: Fri, 25 Mar 2022 11:11:07 GMT
- Title: RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization
- Authors: Yan Xu, Kwan-Yee Lin, Guofeng Zhang, Xiaogang Wang, Hongsheng Li
- Abstract summary: We propose a framework based on a recurrent neural network (RNN) for object pose refinement.
The problem is formulated as a non-linear least squares problem based on the estimated correspondence field.
The correspondence field estimation and pose refinement are conducted alternatively in each iteration to recover accurate object poses.
- Score: 46.144194562841435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Direct estimating the 6-DoF object pose from a single color image is
challenging, and post-refinement is generally needed to achieve high-precision
estimation. In this paper, we propose a framework based on a recurrent neural
network (RNN) for object pose refinement, which is robust to erroneous initial
poses and occlusions. During the recurrent iterations, object pose refinement
is formulated as a non-linear least squares problem based on the estimated
correspondence field (between a rendered image and the observed image). The
problem is then solved by a differentiable Levenberg-Marquardt (LM) algorithm
for end-toend training. The correspondence field estimation and pose refinement
are conducted alternatively in each iteration to recover accurate object poses.
Furthermore, to improve the robustness to occlusions, we introduce a
consistencycheck mechanism based on the learned descriptors of the 3D model and
observed 2D image, which downweights the unreliable correspondences during pose
optimization. Extensive experiments on LINEMOD, Occlusion-LINEMOD, and
YCB-Video datasets validate the effectiveness of our method and demonstrate
state-of-the-art performance.
Related papers
- iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z) - NIKI: Neural Inverse Kinematics with Invertible Neural Networks for 3D
Human Pose and Shape Estimation [53.25973084799954]
We present NIKI (Neural Inverse Kinematics with Invertible Neural Network), which models bi-directional errors.
NIKI can learn from both the forward and inverse processes with invertible networks.
arXiv Detail & Related papers (2023-05-15T12:13:24Z) - Robust Category-Level 6D Pose Estimation with Coarse-to-Fine Rendering
of Neural Features [17.920305227880245]
We consider the problem of category-level 6D pose estimation from a single RGB image.
Our approach represents an object category as a cuboid mesh and learns a generative model of the neural feature activations at each mesh.
Our experiments demonstrate an enhanced category-level 6D pose estimation performance compared to prior work.
arXiv Detail & Related papers (2022-09-12T21:31:36Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Pose is a framework for regressing all 6 degrees-of-freedom (6DoF) for the object pose in a cluttered environment from a single RGB image.
We introduce a novel reasoning about self-occlusion, in order to establish a two-layer representation for 3D objects.
Cross-layer consistencies that align correspondences, self-occlusion and 6D pose, we can further improve accuracy and robustness.
arXiv Detail & Related papers (2021-08-18T19:49:29Z) - Iterative Optimisation with an Innovation CNN for Pose Refinement [17.752556490937092]
In this work we propose an approach, namely an Innovation CNN, to object pose estimation refinement.
Our approach improves initial pose estimation progressively by applying the Innovation CNN iteratively in a gradient descent framework.
We evaluate our method on the popular LINEMOD and Occlusion LINEMOD datasets and obtain state-of-the-art performance on both datasets.
arXiv Detail & Related papers (2021-01-22T00:12:12Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose
Estimation [74.76155168705975]
Deep Bingham Networks (DBN) can handle pose-related uncertainties and ambiguities arising in almost all real life applications concerning 3D data.
DBN extends the state of the art direct pose regression networks by (i) a multi-hypotheses prediction head which can yield different distribution modes.
We propose new training strategies so as to avoid mode or posterior collapse during training and to improve numerical stability.
arXiv Detail & Related papers (2020-12-20T19:20:26Z) - se(3)-TrackNet: Data-driven 6D Pose Tracking by Calibrating Image
Residuals in Synthetic Domains [12.71983073907091]
This work proposes a data-driven optimization approach for long-term, 6D pose tracking.
It aims to identify the optimal relative pose given the current RGB-D observation and a synthetic image conditioned on the previous best estimate and the object's model.
The proposed approach achieves consistently robust estimates and outperforms alternatives, even though they have been trained with real images.
arXiv Detail & Related papers (2020-07-27T21:09:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.