Automatic Speech recognition for Speech Assessment of Preschool Children
- URL: http://arxiv.org/abs/2203.12886v1
- Date: Thu, 24 Mar 2022 07:15:24 GMT
- Title: Automatic Speech recognition for Speech Assessment of Preschool Children
- Authors: Amirhossein Abaskohi, Fatemeh Mortazavi, Hadi Moradi
- Abstract summary: The acoustic and linguistic features of preschool speech are investigated in this study.
Wav2Vec 2.0 is a paradigm that could be used to build a robust end-to-end speech recognition system.
- Score: 4.554894288663752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The acoustic and linguistic features of preschool speech are investigated in
this study to design an automated speech recognition (ASR) system. Acoustic
fluctuation has been highlighted as a significant barrier to developing
high-performance ASR applications for youngsters. Because of the epidemic,
preschool speech assessment should be conducted online. Accordingly, there is a
need for an automatic speech recognition system. We were confronted with new
challenges in our cognitive system, including converting meaningless words from
speech to text and recognizing word sequence. After testing and experimenting
with several models we obtained a 3.1\% phoneme error rate in Persian. Wav2Vec
2.0 is a paradigm that could be used to build a robust end-to-end speech
recognition system.
Related papers
- Towards Unsupervised Speech Recognition Without Pronunciation Models [57.222729245842054]
Most languages lack sufficient paired speech and text data to effectively train automatic speech recognition systems.
We propose the removal of reliance on a phoneme lexicon to develop unsupervised ASR systems.
We experimentally demonstrate that an unsupervised speech recognizer can emerge from joint speech-to-speech and text-to-text masked token-infilling.
arXiv Detail & Related papers (2024-06-12T16:30:58Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
We propose "Contrastive Token-Acoustic Pretraining (CTAP)", which uses two encoders to bring phoneme and speech into a joint multimodal space.
The proposed CTAP model is trained on 210k speech and phoneme pairs, achieving minimally-supervised TTS, VC, and ASR.
arXiv Detail & Related papers (2023-09-01T12:35:43Z) - L2 proficiency assessment using self-supervised speech representations [35.70742768910494]
This work extends the initial analysis conducted on a self-supervised speech representation based scheme, requiring no speech recognition, to a large scale proficiency test.
The performance of the self-supervised, wav2vec 2.0, system is compared to a high performance hand-crafted assessment system and a BERT-based text system.
Though the wav2vec 2.0 based system is found to be sensitive to the nature of the response, it can be configured to yield comparable performance to systems requiring a speech transcription.
arXiv Detail & Related papers (2022-11-16T11:47:20Z) - Evaluation of Automated Speech Recognition Systems for Conversational
Speech: A Linguistic Perspective [0.0]
We take a linguistic perspective, and take the French language as a case study toward disambiguation of the French homophones.
Our contribution aims to provide more insight into human speech transcription accuracy in conditions to reproduce those of state-of-the-art ASR systems.
arXiv Detail & Related papers (2022-11-05T04:35:40Z) - Towards End-to-end Unsupervised Speech Recognition [120.4915001021405]
We introduce wvu which does away with all audio-side pre-processing and improves accuracy through better architecture.
In addition, we introduce an auxiliary self-supervised objective that ties model predictions back to the input.
Experiments show that wvuimproves unsupervised recognition results across different languages while being conceptually simpler.
arXiv Detail & Related papers (2022-04-05T21:22:38Z) - Personalized Speech Enhancement: New Models and Comprehensive Evaluation [27.572537325449158]
We propose two neural networks for personalized speech enhancement (PSE) models that achieve superior performance to the previously proposed VoiceFilter.
We also create test sets that capture a variety of scenarios that users can encounter during video conferencing.
Our results show that the proposed models can yield better speech recognition accuracy, speech intelligibility, and perceptual quality than the baseline models.
arXiv Detail & Related papers (2021-10-18T21:21:23Z) - On Prosody Modeling for ASR+TTS based Voice Conversion [82.65378387724641]
In voice conversion, an approach showing promising results in the latest voice conversion challenge (VCC) 2020 is to first use an automatic speech recognition (ASR) model to transcribe the source speech into the underlying linguistic contents.
Such a paradigm, referred to as ASR+TTS, overlooks the modeling of prosody, which plays an important role in speech naturalness and conversion similarity.
We propose to directly predict prosody from the linguistic representation in a target-speaker-dependent manner, referred to as target text prediction (TTP)
arXiv Detail & Related papers (2021-07-20T13:30:23Z) - On the Impact of Word Error Rate on Acoustic-Linguistic Speech Emotion
Recognition: An Update for the Deep Learning Era [0.0]
We create transcripts from the original speech by applying three modern ASR systems.
For extraction and learning of acoustic speech features, we utilise openSMILE, openXBoW, DeepSpectrum, and auDeep.
We achieve state-of-the-art unweighted average recall values of $73.6,%$ and $73.8,%$ on the speaker-independent development and test partitions of IEMOCAP.
arXiv Detail & Related papers (2021-04-20T17:10:01Z) - Dynamic Acoustic Unit Augmentation With BPE-Dropout for Low-Resource
End-to-End Speech Recognition [62.94773371761236]
We consider building an effective end-to-end ASR system in low-resource setups with a high OOV rate.
We propose a method of dynamic acoustic unit augmentation based on the BPE-dropout technique.
Our monolingual Turkish Conformer established a competitive result with 22.2% character error rate (CER) and 38.9% word error rate (WER)
arXiv Detail & Related papers (2021-03-12T10:10:13Z) - Learning Explicit Prosody Models and Deep Speaker Embeddings for
Atypical Voice Conversion [60.808838088376675]
We propose a VC system with explicit prosodic modelling and deep speaker embedding learning.
A prosody corrector takes in phoneme embeddings to infer typical phoneme duration and pitch values.
A conversion model takes phoneme embeddings and typical prosody features as inputs to generate the converted speech.
arXiv Detail & Related papers (2020-11-03T13:08:53Z) - A Machine of Few Words -- Interactive Speaker Recognition with
Reinforcement Learning [35.36769027019856]
We present a new paradigm for automatic speaker recognition that we call Interactive Speaker Recognition (ISR)
In this paradigm, the recognition system aims to incrementally build a representation of the speakers by requesting personalized utterances.
We show that our method achieves excellent performance while using little speech signal amounts.
arXiv Detail & Related papers (2020-08-07T12:44:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.