Rope3D: TheRoadside Perception Dataset for Autonomous Driving and
Monocular 3D Object Detection Task
- URL: http://arxiv.org/abs/2203.13608v1
- Date: Fri, 25 Mar 2022 12:13:23 GMT
- Title: Rope3D: TheRoadside Perception Dataset for Autonomous Driving and
Monocular 3D Object Detection Task
- Authors: Xiaoqing Ye, Mao Shu, Hanyu Li, Yifeng Shi, Yingying Li, Guangjie
Wang, Xiao Tan, Errui Ding
- Abstract summary: We present the first high-diversity challenging Roadside Perception 3D dataset- Rope3D from a novel view.
The dataset consists of 50k images and over 1.5M 3D objects in various scenes.
We propose to leverage the geometry constraint to solve the inherent ambiguities caused by various sensors, viewpoints.
- Score: 48.555440807415664
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Concurrent perception datasets for autonomous driving are mainly limited to
frontal view with sensors mounted on the vehicle. None of them is designed for
the overlooked roadside perception tasks. On the other hand, the data captured
from roadside cameras have strengths over frontal-view data, which is believed
to facilitate a safer and more intelligent autonomous driving system. To
accelerate the progress of roadside perception, we present the first
high-diversity challenging Roadside Perception 3D dataset- Rope3D from a novel
view. The dataset consists of 50k images and over 1.5M 3D objects in various
scenes, which are captured under different settings including various cameras
with ambiguous mounting positions, camera specifications, viewpoints, and
different environmental conditions. We conduct strict 2D-3D joint annotation
and comprehensive data analysis, as well as set up a new 3D roadside perception
benchmark with metrics and evaluation devkit. Furthermore, we tailor the
existing frontal-view monocular 3D object detection approaches and propose to
leverage the geometry constraint to solve the inherent ambiguities caused by
various sensors, viewpoints. Our dataset is available on
https://thudair.baai.ac.cn/rope.
Related papers
- HeightFormer: A Semantic Alignment Monocular 3D Object Detection Method from Roadside Perspective [11.841338298700421]
We propose a novel 3D object detection framework integrating Spatial Former and Voxel Pooling Former to enhance 2D-to-3D projection based on height estimation.
Experiments were conducted using the Rope3D and DAIR-V2X-I dataset, and the results demonstrated the outperformance of the proposed algorithm in the detection of both vehicles and cyclists.
arXiv Detail & Related papers (2024-10-10T09:37:33Z) - MagicDrive: Street View Generation with Diverse 3D Geometry Control [82.69871576797166]
We introduce MagicDrive, a novel street view generation framework, offering diverse 3D geometry controls.
Our design incorporates a cross-view attention module, ensuring consistency across multiple camera views.
arXiv Detail & Related papers (2023-10-04T06:14:06Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
We propose a 3D data augmentation approach termed Drive-3DAug, aiming at augmenting the driving scenes on camera in the 3D space.
We first utilize Neural Radiance Field (NeRF) to reconstruct the 3D models of background and foreground objects.
Then, augmented driving scenes can be obtained by placing the 3D objects with adapted location and orientation at the pre-defined valid region of backgrounds.
arXiv Detail & Related papers (2023-03-18T05:51:05Z) - Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data [80.14669385741202]
We propose a self-supervised pre-training method for 3D perception models tailored to autonomous driving data.
We leverage the availability of synchronized and calibrated image and Lidar sensors in autonomous driving setups.
Our method does not require any point cloud nor image annotations.
arXiv Detail & Related papers (2022-03-30T12:40:30Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
7DoF prediction of vehicles at an intersection is an important task for assessing potential conflicts between road users.
We develop an approach using a weakly supervised method of fine tuning 3D object detectors for traffic observation cameras.
Our method achieves vehicle 7DoF pose prediction accuracy on our dataset comparable to the top performing monocular 3D object detectors on autonomous vehicle datasets.
arXiv Detail & Related papers (2021-10-21T08:26:48Z) - Disentangling and Vectorization: A 3D Visual Perception Approach for
Autonomous Driving Based on Surround-View Fisheye Cameras [3.485767750936058]
Multidimensional Vector is proposed to include the utilizable information generated in different dimensions and stages.
The experiments of real fisheye images demonstrate that our solution achieves state-of-the-art accuracy while being real-time in practice.
arXiv Detail & Related papers (2021-07-19T13:24:21Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.