Clustering Aided Weakly Supervised Training to Detect Anomalous Events
in Surveillance Videos
- URL: http://arxiv.org/abs/2203.13704v1
- Date: Fri, 25 Mar 2022 15:18:19 GMT
- Title: Clustering Aided Weakly Supervised Training to Detect Anomalous Events
in Surveillance Videos
- Authors: Muhammad Zaigham Zaheer, Arif Mahmood, Marcella Astrid, Seung-Ik Lee
- Abstract summary: We propose a weakly supervised anomaly detection system which has multiple contributions including a random batch selection mechanism.
A clustering loss block is proposed to mitigate the label noise and to improve the representation learning for the anomalous and normal regions.
Extensive analysis of the proposed approach is provided using three popular anomaly detection datasets.
- Score: 20.368114998124295
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Formulating learning systems for the detection of real-world anomalous events
using only video-level labels is a challenging task mainly due to the presence
of noisy labels as well as the rare occurrence of anomalous events in the
training data. We propose a weakly supervised anomaly detection system which
has multiple contributions including a random batch selection mechanism to
reduce inter-batch correlation and a normalcy suppression block which learns to
minimize anomaly scores over normal regions of a video by utilizing the overall
information available in a training batch. In addition, a clustering loss block
is proposed to mitigate the label noise and to improve the representation
learning for the anomalous and normal regions. This block encourages the
backbone network to produce two distinct feature clusters representing normal
and anomalous events. Extensive analysis of the proposed approach is provided
using three popular anomaly detection datasets including UCF-Crime,
ShanghaiTech, and UCSD Ped2. The experiments demonstrate a superior anomaly
detection capability of our approach.
Related papers
- Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - A Coarse-to-Fine Pseudo-Labeling (C2FPL) Framework for Unsupervised
Video Anomaly Detection [4.494911384096143]
Detection of anomalous events in videos is an important problem in applications such as surveillance.
We propose a simple-but-effective two-stage pseudo-label generation framework that produces segment-level (normal/anomaly) pseudo-labels.
The proposed coarse-to-fine pseudo-label generator employs carefully-designed hierarchical divisive clustering and statistical hypothesis testing.
arXiv Detail & Related papers (2023-10-26T17:59:19Z) - A Supervised Embedding and Clustering Anomaly Detection method for
classification of Mobile Network Faults [0.0]
The paper introduces Supervised Embedding and Clustering Anomaly Detection (SEMC-AD)
It is a method designed to efficiently identify faulty alarm logs in a mobile network and alleviate the challenges of manual monitoring.
SEMC-AD achieves 99% anomaly detection, whereas random forest and XGBoost only detect 86% and 81% of anomalies, respectively.
arXiv Detail & Related papers (2023-10-10T16:54:25Z) - Abnormal Event Detection via Hypergraph Contrastive Learning [54.80429341415227]
Abnormal event detection plays an important role in many real applications.
In this paper, we study the unsupervised abnormal event detection problem in Attributed Heterogeneous Information Network.
A novel hypergraph contrastive learning method, named AEHCL, is proposed to fully capture abnormal event patterns.
arXiv Detail & Related papers (2023-04-02T08:23:20Z) - An optimization method for out-of-distribution anomaly detection models [6.075775003017512]
Frequent false alarms impede the promotion of unsupervised anomaly detection algorithms in industrial applications.
An SVM-based classifier is exploited as a post-processing module to identify false alarms from the anomaly map at the object level.
arXiv Detail & Related papers (2023-02-02T08:29:10Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
We propose a supervised open-set benchmark composed of multiple virtual scenes for video anomaly detection.
Unlike existing data sets, we introduce abnormal events annotated at the pixel level at training time.
We show that UBnormal can enhance the performance of a state-of-the-art anomaly detection framework.
arXiv Detail & Related papers (2021-11-16T17:28:46Z) - Enhancing Unsupervised Anomaly Detection with Score-Guided Network [13.127091975959358]
Anomaly detection plays a crucial role in various real-world applications, including healthcare and finance systems.
We propose a novel scoring network with a score-guided regularization to learn and enlarge the anomaly score disparities between normal and abnormal data.
We next propose a score-guided autoencoder (SG-AE), incorporating the scoring network into an autoencoder framework for anomaly detection.
arXiv Detail & Related papers (2021-09-10T06:14:53Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - CLAWS: Clustering Assisted Weakly Supervised Learning with Normalcy
Suppression for Anomalous Event Detection [20.368114998124295]
We propose a weakly supervised anomaly detection method which has manifold contributions.
The proposed method obtains83.03% and 89.67% frame-level AUC performance on the UCF Crime and ShanghaiTech datasets respectively.
arXiv Detail & Related papers (2020-11-24T13:27:40Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
Abnormal event detection in video is a complex computer vision problem that has attracted significant attention in recent years.
We propose a background-agnostic framework that learns from training videos containing only normal events.
arXiv Detail & Related papers (2020-08-27T18:39:24Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.