Bridge-Prompt: Towards Ordinal Action Understanding in Instructional
Videos
- URL: http://arxiv.org/abs/2203.14104v1
- Date: Sat, 26 Mar 2022 15:52:27 GMT
- Title: Bridge-Prompt: Towards Ordinal Action Understanding in Instructional
Videos
- Authors: Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie Zhou,
Jiwen Lu
- Abstract summary: We propose a prompt-based framework, Bridge-Prompt, to model the semantics across adjacent actions.
We reformulate the individual action labels as integrated text prompts for supervision, which bridge the gap between individual action semantics.
Br-Prompt achieves state-of-the-art on multiple benchmarks.
- Score: 92.18898962396042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Action recognition models have shown a promising capability to classify human
actions in short video clips. In a real scenario, multiple correlated human
actions commonly occur in particular orders, forming semantically meaningful
human activities. Conventional action recognition approaches focus on analyzing
single actions. However, they fail to fully reason about the contextual
relations between adjacent actions, which provide potential temporal logic for
understanding long videos. In this paper, we propose a prompt-based framework,
Bridge-Prompt (Br-Prompt), to model the semantics across adjacent actions, so
that it simultaneously exploits both out-of-context and contextual information
from a series of ordinal actions in instructional videos. More specifically, we
reformulate the individual action labels as integrated text prompts for
supervision, which bridge the gap between individual action semantics. The
generated text prompts are paired with corresponding video clips, and together
co-train the text encoder and the video encoder via a contrastive approach. The
learned vision encoder has a stronger capability for ordinal-action-related
downstream tasks, e.g. action segmentation and human activity recognition. We
evaluate the performances of our approach on several video datasets: Georgia
Tech Egocentric Activities (GTEA), 50Salads, and the Breakfast dataset.
Br-Prompt achieves state-of-the-art on multiple benchmarks. Code is available
at https://github.com/ttlmh/Bridge-Prompt
Related papers
- Storyboard guided Alignment for Fine-grained Video Action Recognition [32.02631248389487]
Fine-grained video action recognition can be conceptualized as a video-text matching problem.
We propose a multi-granularity framework based on two observations: (i) videos with different global semantics may share similar atomic actions or appearances, and (ii) atomic actions within a video can be momentary, slow, or even non-directly related to the global video semantics.
arXiv Detail & Related papers (2024-10-18T07:40:41Z) - Spatio-Temporal Context Prompting for Zero-Shot Action Detection [13.22912547389941]
We propose a method which can effectively leverage the rich knowledge of visual-language models to perform Person-Context Interaction.
To address the challenge of recognizing distinct actions by multiple people at the same timestamp, we design the Interest Token Spotting mechanism.
Our method achieves superior results compared to previous approaches and can be further extended to multi-action videos.
arXiv Detail & Related papers (2024-08-28T17:59:05Z) - VrdONE: One-stage Video Visual Relation Detection [30.983521962897477]
Video Visual Relation Detection (VidVRD) focuses on understanding how entities over time and space in videos.
Traditional methods for VidVRD, challenged by its complexity, typically split the task into two parts: one for identifying what relation are present and another for determining their temporal boundaries.
We propose VrdONE, a streamlined yet efficacious one-stage model for VidVRD.
arXiv Detail & Related papers (2024-08-18T08:38:20Z) - OmniVid: A Generative Framework for Universal Video Understanding [133.73878582161387]
We seek to unify the output space of video understanding tasks by using languages as labels and additionally introducing time and box tokens.
This enables us to address various types of video tasks, including classification, captioning, and localization.
We demonstrate such a simple and straightforward idea is quite effective and can achieve state-of-the-art or competitive results.
arXiv Detail & Related papers (2024-03-26T17:59:24Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
Localizing people and recognizing their actions from videos is a challenging task towards high-level video understanding.
Existing methods are mostly two-stage based, with one stage for person bounding box generation and the other stage for action recognition.
We present a decoupled one-stage network dubbed DOAD, to improve the efficiency for-temporal action detection.
arXiv Detail & Related papers (2023-04-01T08:06:43Z) - HierVL: Learning Hierarchical Video-Language Embeddings [108.77600799637172]
HierVL is a novel hierarchical video-language embedding that simultaneously accounts for both long-term and short-term associations.
We introduce a hierarchical contrastive training objective that encourages text-visual alignment at both the clip level and video level.
Our hierarchical scheme yields a clip representation that outperforms its single-level counterpart as well as a long-term video representation that achieves SotA.
arXiv Detail & Related papers (2023-01-05T21:53:19Z) - Towards Tokenized Human Dynamics Representation [41.75534387530019]
We study how to segment and cluster videos into recurring temporal patterns in a self-supervised way.
We evaluate the frame-wise representation learning step by Kendall's Tau and the lexicon building step by normalized mutual information and language entropy.
On the AIST++ and PKU-MMD datasets, actons bring significant performance improvements compared to several baselines.
arXiv Detail & Related papers (2021-11-22T18:59:58Z) - Improved Actor Relation Graph based Group Activity Recognition [0.0]
The detailed description of human actions and group activities is essential information, which can be used in real-time CCTV video surveillance, health care, sports video analysis, etc.
This study proposes a video understanding method that mainly focused on group activity recognition by learning the pair-wise actor appearance similarity and actor positions.
arXiv Detail & Related papers (2020-10-24T19:46:49Z) - Learning Modality Interaction for Temporal Sentence Localization and
Event Captioning in Videos [76.21297023629589]
We propose a novel method for learning pairwise modality interactions in order to better exploit complementary information for each pair of modalities in videos.
Our method turns out to achieve state-of-the-art performances on four standard benchmark datasets.
arXiv Detail & Related papers (2020-07-28T12:40:59Z) - Intra- and Inter-Action Understanding via Temporal Action Parsing [118.32912239230272]
We construct a new dataset developed on sport videos with manual annotations of sub-actions, and conduct a study on temporal action parsing on top.
Our study shows that a sport activity usually consists of multiple sub-actions and that the awareness of such temporal structures is beneficial to action recognition.
We also investigate a number of temporal parsing methods, and thereon devise an improved method that is capable of mining sub-actions from training data without knowing the labels of them.
arXiv Detail & Related papers (2020-05-20T17:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.