Simulating open quantum many-body systems using optimised circuits in
digital quantum simulation
- URL: http://arxiv.org/abs/2203.14295v1
- Date: Sun, 27 Mar 2022 13:00:02 GMT
- Title: Simulating open quantum many-body systems using optimised circuits in
digital quantum simulation
- Authors: Minjae Jo and Myungshik Kim
- Abstract summary: We study models in open quantum systems with Trotterisations for the modified Schr"odinger equation (MSSE)
Minimising the leading error in MSSE enables to optimise the quantum circuits.
We run the algorithm on the IBM Quantum devices, showing that the current machine is challenging to give quantitatively accurate time dynamics due to the noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital quantum computers are potentially an ideal platform for simulating
open quantum many-body systems beyond the digital classical computers. Many
studies have focused on obtaining the ground state by simulating time dynamics
or variational approaches of closed quantum systems. However, dynamics of open
quantum systems has not been given much attention with a reason being their
non-unitary dynamics not natural to simulate on a set of unitary gate
operations in quantum computing. Here we study prototypical models in open
quantum systems with Trotterisations for the modified stochastic
Schr{\"o}dinger equation (MSSE). Minimising the leading error in MSSE enables
to optimise the quantum circuits, and we run the optimised circuits with the
noiseless \textit{quantum assembly language (QASM) simulator} and the noisy IBM
Quantum devices. The \textit{QASM simulator} enables to study the reachable
system size that is comparable to the limits of classical computers. The
results show that the nonequilibrium critical phenomena in open quantum systems
are successfully obtained with high precision. Furthermore, we run the
algorithm on the IBM Quantum devices, showing that the current machine is
challenging, to give quantitatively accurate time dynamics due to the noise.
Despite errors, the results by IBM devices qualitatively follow the trend of
critical behaviour and include a possibility to demonstrate quantum advantage
when the noise is reduced. We discuss how much noise should be reduced for a
certain fidelity using the noise model, which will be crucial to demonstrate
quantum advantage from future quantum devices.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Noise-assisted digital quantum simulation of open systems [1.3124513975412255]
We present a novel approach that capitalizes on the intrinsic noise of quantum devices to reduce the computational resources required for simulating open quantum systems.
Specifically, we selectively enhance or reduce decoherence rates in the quantum circuit to achieve the desired simulation of open system dynamics.
arXiv Detail & Related papers (2023-02-28T14:21:43Z) - Quantum Simulation on Noisy Superconducting Quantum Computers [0.0]
Quantum simulation is a potentially powerful application of quantum computing.
There is little introductory literature or demonstrations of the topic at a graduate or undergraduate student level.
This artificially raises the barrier to entry into the field which already has a limited workforce.
arXiv Detail & Related papers (2022-09-06T19:44:18Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Optimal quantum simulation of open quantum systems [1.9551668880584971]
Digital quantum simulation on quantum systems require algorithms that can be implemented using finite quantum resources.
Recent studies have demonstrated digital quantum simulation of open quantum systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We develop quantum circuits for optimal simulation of Markovian and Non-Markovian open quantum systems.
arXiv Detail & Related papers (2020-12-14T14:00:36Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Digital Quantum Simulation of Non-Equilibrium Quantum Many-Body Systems [0.0]
Digital quantum simulation uses the capabilities of quantum computers to determine the dynamics of quantum systems.
Here we use the IBM quantum computers to simulate the non-equilibrium dynamics of few spin and fermionic systems.
arXiv Detail & Related papers (2020-09-15T22:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.