Adversarial Representation Sharing: A Quantitative and Secure
Collaborative Learning Framework
- URL: http://arxiv.org/abs/2203.14299v1
- Date: Sun, 27 Mar 2022 13:29:15 GMT
- Title: Adversarial Representation Sharing: A Quantitative and Secure
Collaborative Learning Framework
- Authors: Jikun Chen, Feng Qiang, Na Ruan
- Abstract summary: We find representation learning has unique advantages in collaborative learning due to the lower communication overhead and task-independency.
We present ARS, a collaborative learning framework wherein users share representations of data to train models.
We demonstrate that our mechanism is effective against model inversion attacks, and achieves a balance between privacy and utility.
- Score: 3.759936323189418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of deep learning models highly depends on the amount of
training data. It is common practice for today's data holders to merge their
datasets and train models collaboratively, which yet poses a threat to data
privacy. Different from existing methods such as secure multi-party computation
(MPC) and federated learning (FL), we find representation learning has unique
advantages in collaborative learning due to the lower communication overhead
and task-independency. However, data representations face the threat of model
inversion attacks. In this article, we formally define the collaborative
learning scenario, and quantify data utility and privacy. Then we present ARS,
a collaborative learning framework wherein users share representations of data
to train models, and add imperceptible adversarial noise to data
representations against reconstruction or attribute extraction attacks. By
evaluating ARS in different contexts, we demonstrate that our mechanism is
effective against model inversion attacks, and achieves a balance between
privacy and utility. The ARS framework has wide applicability. First, ARS is
valid for various data types, not limited to images. Second, data
representations shared by users can be utilized in different tasks. Third, the
framework can be easily extended to the vertical data partitioning scenario.
Related papers
- Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
We focus on the summarization task and investigate the membership inference (MI) attack.
We exploit text similarity and the model's resistance to document modifications as potential MI signals.
We discuss several safeguards for training summarization models to protect against MI attacks and discuss the inherent trade-off between privacy and utility.
arXiv Detail & Related papers (2023-10-20T05:44:39Z) - Recovering from Privacy-Preserving Masking with Large Language Models [14.828717714653779]
We use large language models (LLMs) to suggest substitutes of masked tokens.
We show that models trained on the obfuscation corpora are able to achieve comparable performance with the ones trained on the original data.
arXiv Detail & Related papers (2023-09-12T16:39:41Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Information Stealing in Federated Learning Systems Based on Generative
Adversarial Networks [0.5156484100374059]
We mounted adversarial attacks on a federated learning (FL) environment using three different datasets.
The attacks leveraged generative adversarial networks (GANs) to affect the learning process.
We reconstructed the real data of the victim from the shared global model parameters with all the applied datasets.
arXiv Detail & Related papers (2021-08-02T08:12:43Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Learning to Match Jobs with Resumes from Sparse Interaction Data using
Multi-View Co-Teaching Network [83.64416937454801]
Job-resume interaction data is sparse and noisy, which affects the performance of job-resume match algorithms.
We propose a novel multi-view co-teaching network from sparse interaction data for job-resume matching.
Our model is able to outperform state-of-the-art methods for job-resume matching.
arXiv Detail & Related papers (2020-09-25T03:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.