Automatic Debate Evaluation with Argumentation Semantics and Natural
Language Argument Graph Networks
- URL: http://arxiv.org/abs/2203.14647v2
- Date: Sun, 21 Jan 2024 14:39:30 GMT
- Title: Automatic Debate Evaluation with Argumentation Semantics and Natural
Language Argument Graph Networks
- Authors: Ramon Ruiz-Dolz, Stella Heras, Ana Garc\'ia-Fornes
- Abstract summary: We propose an original hybrid method to automatically evaluate argumentative debates.
For that purpose, we combine concepts from argumentation theory with Transformer-based architectures and neural graph networks.
We obtain promising results that lay the basis on an unexplored new instance of the automatic analysis of natural language arguments.
- Score: 2.4861619769660637
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The lack of annotated data on professional argumentation and complete
argumentative debates has led to the oversimplification and the inability of
approaching more complex natural language processing tasks. Such is the case of
the automatic debate evaluation. In this paper, we propose an original hybrid
method to automatically evaluate argumentative debates. For that purpose, we
combine concepts from argumentation theory such as argumentation frameworks and
semantics, with Transformer-based architectures and neural graph networks.
Furthermore, we obtain promising results that lay the basis on an unexplored
new instance of the automatic analysis of natural language arguments.
Related papers
- Counterfactual and Semifactual Explanations in Abstract Argumentation: Formal Foundations, Complexity and Computation [19.799266797193344]
Argumentation-based systems often lack explainability while supporting decision-making processes.
Counterfactual and semifactual explanations are interpretability techniques.
We show that counterfactual and semifactual queries can be encoded in weak-constrained Argumentation Framework.
arXiv Detail & Related papers (2024-05-07T07:27:27Z) - Argue with Me Tersely: Towards Sentence-Level Counter-Argument
Generation [62.069374456021016]
We present the ArgTersely benchmark for sentence-level counter-argument generation.
We also propose Arg-LlaMA for generating high-quality counter-argument.
arXiv Detail & Related papers (2023-12-21T06:51:34Z) - AMERICANO: Argument Generation with Discourse-driven Decomposition and Agent Interaction [25.38899822861742]
We propose Americano, a novel framework with agent interaction for argument generation.
Our approach decomposes the generation process into sequential actions grounded on argumentation theory.
Our method outperforms both end-to-end and chain-of-thought prompting methods.
arXiv Detail & Related papers (2023-10-31T10:47:33Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
We present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way.
Our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
arXiv Detail & Related papers (2023-10-18T20:18:05Z) - Contextualizing Argument Quality Assessment with Relevant Knowledge [11.367297319588411]
SPARK is a novel method for scoring argument quality based on contextualization via relevant knowledge.
We devise four augmentations that leverage large language models to provide feedback, infer hidden assumptions, supply a similar-quality argument, or give a counter-argument.
arXiv Detail & Related papers (2023-05-20T21:04:58Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
We present an approach for representing abstract argumentation frameworks based on an encoding into classical higher-order logic.
This provides a uniform framework for computer-assisted assessment of abstract argumentation frameworks using interactive and automated reasoning tools.
arXiv Detail & Related papers (2021-10-18T10:45:59Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
This paper empirically shows that the discourse relations between two arguments along the context path are essential factors for identifying the persuasive power of an argument.
We propose DisCOC to inject and fuse the sentence-level structural information with contextualized features derived from large-scale language models.
arXiv Detail & Related papers (2021-06-02T06:49:19Z) - I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling [104.09033240889106]
We introduce the DialoguE COntradiction DEtection task (DECODE) and a new conversational dataset containing both human-human and human-bot contradictory dialogues.
We then compare a structured utterance-based approach of using pre-trained Transformer models for contradiction detection with the typical unstructured approach.
arXiv Detail & Related papers (2020-12-24T18:47:49Z) - Aspect-Controlled Neural Argument Generation [65.91772010586605]
We train a language model for argument generation that can be controlled on a fine-grained level to generate sentence-level arguments for a given topic, stance, and aspect.
Our evaluation shows that our generation model is able to generate high-quality, aspect-specific arguments.
These arguments can be used to improve the performance of stance detection models via data augmentation and to generate counter-arguments.
arXiv Detail & Related papers (2020-04-30T20:17:22Z) - AMPERSAND: Argument Mining for PERSuAsive oNline Discussions [41.06165177604387]
We propose a computational model for argument mining in online persuasive discussion forums.
Our approach relies on identifying relations between components of arguments in a discussion thread.
Our models obtain significant improvements compared to recent state-of-the-art approaches.
arXiv Detail & Related papers (2020-04-30T10:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.