Learning to segment fetal brain tissue from noisy annotations
- URL: http://arxiv.org/abs/2203.14962v1
- Date: Fri, 25 Mar 2022 21:22:24 GMT
- Title: Learning to segment fetal brain tissue from noisy annotations
- Authors: Davood Karimi, Caitlin K. Rollins, Clemente Velasco-Annis, Abdelhakim
Ouaalam, and Ali Gholipour
- Abstract summary: Automatic fetal brain tissue segmentation can enhance the quantitative assessment of brain development at this critical stage.
Deep learning methods represent the state of the art in medical image segmentation and have also achieved impressive results in brain segmentation.
However, effective training of a deep learning model to perform this task requires a large number of training images to represent the rapid development of the transient fetal brain structures.
- Score: 6.456673654519456
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic fetal brain tissue segmentation can enhance the quantitative
assessment of brain development at this critical stage. Deep learning methods
represent the state of the art in medical image segmentation and have also
achieved impressive results in brain segmentation. However, effective training
of a deep learning model to perform this task requires a large number of
training images to represent the rapid development of the transient fetal brain
structures. On the other hand, manual multi-label segmentation of a large
number of 3D images is prohibitive. To address this challenge, we segmented 272
training images, covering 19-39 gestational weeks, using an automatic
multi-atlas segmentation strategy based on deformable registration and
probabilistic atlas fusion, and manually corrected large errors in those
segmentations. Since this process generated a large training dataset with noisy
segmentations, we developed a novel label smoothing procedure and a loss
function to train a deep learning model with smoothed noisy segmentations. Our
proposed methods properly account for the uncertainty in tissue boundaries. We
evaluated our method on 23 manually-segmented test images of a separate set of
fetuses. Results show that our method achieves an average Dice similarity
coefficient of 0.893 and 0.916 for the transient structures of younger and
older fetuses, respectively. Our method generated results that were
significantly more accurate than several state-of-the-art methods including
nnU-Net that achieved the closest results to our method. Our trained model can
serve as a valuable tool to enhance the accuracy and reproducibility of fetal
brain analysis in MRI.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Label-efficient Multi-organ Segmentation Method with Diffusion Model [6.413416851085592]
We present a label-efficient learning approach using a pre-trained diffusion model for multi-organ segmentation tasks in CT images.
Our method achieves competitive multi-organ segmentation performance compared to state-of-the-art methods on the FLARE 2022 dataset.
arXiv Detail & Related papers (2024-02-23T09:25:57Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
This study develops an algorithm for calculating bone growth in contact with metallic implants.
Bone and implant tissue were manually segmented in the training data set.
In terms of network accuracy, the model reached around 98%.
arXiv Detail & Related papers (2022-04-22T08:17:20Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - A Deep Attentive Convolutional Neural Network for Automatic Cortical
Plate Segmentation in Fetal MRI [12.554154620492772]
We develop a new and powerful deep learning segmentation method for fetal brain MRI scans.
Our method exploits new deep attentive modules with mixed kernel convolutions within a fully convolutional neural network architecture.
Our method can facilitate and accelerate large-scale studies on normal and altered fetal brain cortical maturation and folding.
arXiv Detail & Related papers (2020-04-27T14:55:22Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.