A Well-Composed Text is Half Done! Composition Sampling for Diverse
Conditional Generation
- URL: http://arxiv.org/abs/2203.15108v1
- Date: Mon, 28 Mar 2022 21:24:03 GMT
- Title: A Well-Composed Text is Half Done! Composition Sampling for Diverse
Conditional Generation
- Authors: Shashi Narayan, Gon\c{c}alo Sim\~oes, Yao Zhao, Joshua Maynez,
Dipanjan Das, Michael Collins and Mirella Lapata
- Abstract summary: We propose Composition Sampling, a simple but effective method to generate diverse outputs for conditional generation of higher quality.
It builds on recently proposed plan-based neural generation models that are trained to first create a composition of the output and then generate by conditioning on it and the input.
- Score: 79.98319703471596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Composition Sampling, a simple but effective method to generate
diverse outputs for conditional generation of higher quality compared to
previous stochastic decoding strategies. It builds on recently proposed
plan-based neural generation models (Narayan et al, 2021) that are trained to
first create a composition of the output and then generate by conditioning on
it and the input. Our approach avoids text degeneration by first sampling a
composition in the form of an entity chain and then using beam search to
generate the best possible text grounded to this entity chain. Experiments on
summarization (CNN/DailyMail and XSum) and question generation (SQuAD), using
existing and newly proposed automatic metrics together with human-based
evaluation, demonstrate that Composition Sampling is currently the best
available decoding strategy for generating diverse meaningful outputs.
Related papers
- Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation [60.493180081319785]
We propose a systematic way to estimate the intrinsic capacity of a truncation sampling method by considering the trade-off between diversity and risk at each decoding step.
Our work provides a comprehensive comparison between existing truncation sampling methods, as well as their recommended parameters as a guideline for users.
arXiv Detail & Related papers (2024-08-24T14:14:32Z) - Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs [4.122612309805664]
Large Language Models (LLMs) generate text by sampling the next token from a probability distribution over the vocabulary at each decoding step.
We propose min-p sampling, a dynamic truncation method that adjusts the sampling threshold based on the model's confidence by scaling according to the top token's probability.
We conduct extensive experiments on benchmarks including GPQA, GSM8K, and AlpacaEval Creative Writing, demonstrating that min-p sampling improves both the quality and diversity of generated text, particularly at high temperatures.
arXiv Detail & Related papers (2024-07-01T08:37:25Z) - Self-Consistent Decoding for More Factual Open Responses [28.184313177333642]
"Sample & Select" improves factuality by a 30% relative margin against decoders of DoLA, P-CRR, and S-CRR.
We collect human verifications of the generated summaries, confirming the factual superiority of our method.
arXiv Detail & Related papers (2024-03-01T17:31:09Z) - Principled Gradient-based Markov Chain Monte Carlo for Text Generation [77.46654898866291]
We propose several faithful gradient-based sampling algorithms to sample from the target energy-based text distribution correctly.
We demonstrate that faithful samplers are able to generate more fluent text while adhering to the control objectives better.
arXiv Detail & Related papers (2023-12-29T18:00:56Z) - Data-to-text Generation with Variational Sequential Planning [74.3955521225497]
We consider the task of data-to-text generation, which aims to create textual output from non-linguistic input.
We propose a neural model enhanced with a planning component responsible for organizing high-level information in a coherent and meaningful way.
We infer latent plans sequentially with a structured variational model, while interleaving the steps of planning and generation.
arXiv Detail & Related papers (2022-02-28T13:17:59Z) - Sequence-Level Mixed Sample Data Augmentation [119.94667752029143]
This work proposes a simple data augmentation approach to encourage compositional behavior in neural models for sequence-to-sequence problems.
Our approach, SeqMix, creates new synthetic examples by softly combining input/output sequences from the training set.
arXiv Detail & Related papers (2020-11-18T02:18:04Z) - Self-Adversarial Learning with Comparative Discrimination for Text
Generation [111.18614166615968]
We propose a novel self-adversarial learning (SAL) paradigm for improving GANs' performance in text generation.
During training, SAL rewards the generator when its currently generated sentence is found to be better than its previously generated samples.
Experiments on text generation benchmark datasets show that our proposed approach substantially improves both the quality and the diversity.
arXiv Detail & Related papers (2020-01-31T07:50:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.