Efficient Convex Optimization Requires Superlinear Memory
- URL: http://arxiv.org/abs/2203.15260v2
- Date: Wed, 24 Jul 2024 11:21:47 GMT
- Title: Efficient Convex Optimization Requires Superlinear Memory
- Authors: Annie Marsden, Vatsal Sharan, Aaron Sidford, Gregory Valiant,
- Abstract summary: We show that any memory-constrained, first-order algorithm which minimizes $d$-dimensional, $1T-Lipschitz convex functions over the unit ball to $1/mathrmpoly(d)$ accuracy using at most $d1.25 - delta$ bits of memory must make at least $tildeOmega(d1 + (4/3)delta)$ first-order queries.
- Score: 27.11113888243391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that any memory-constrained, first-order algorithm which minimizes $d$-dimensional, $1$-Lipschitz convex functions over the unit ball to $1/\mathrm{poly}(d)$ accuracy using at most $d^{1.25 - \delta}$ bits of memory must make at least $\tilde{\Omega}(d^{1 + (4/3)\delta})$ first-order queries (for any constant $\delta \in [0, 1/4]$). Consequently, the performance of such memory-constrained algorithms are a polynomial factor worse than the optimal $\tilde{O}(d)$ query bound for this problem obtained by cutting plane methods that use $\tilde{O}(d^2)$ memory. This resolves a COLT 2019 open problem of Woodworth and Srebro.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Gradient Descent is Pareto-Optimal in the Oracle Complexity and Memory Tradeoff for Feasibility Problems [0.0]
We show that to solve feasibility problems with accuracy any deterministic algorithm either uses $d1+delta$ bits of memory or must make at least $1/(d0.01delta epsilon2frac1-delta1+1.01 delta-o(1))$ oracle queries.
We also show that randomized algorithms either use $d1+delta$ memory or make at least $1/(d2delta epsilon2(1-4delta)-o(1))$ queries for any $deltain
arXiv Detail & Related papers (2024-04-10T04:15:50Z) - A Whole New Ball Game: A Primal Accelerated Method for Matrix Games and
Minimizing the Maximum of Smooth Functions [44.655316553524855]
We design algorithms for minimizing $max_iin[n] f_i(x) over a $d$-dimensional Euclidean or simplex domain.
When each $f_i$ is $1$-Lipschitz and $1$-smooth, our method computes an $epsilon-approximate solution.
arXiv Detail & Related papers (2023-11-17T22:07:18Z) - Memory-Query Tradeoffs for Randomized Convex Optimization [16.225462097812766]
We show that any randomized first-order algorithm which minimizes a $d$-dimensional, $1$-Lipschitz convex function over the unit ball must either use $Omega(d2-delta)$ bits of memory or make $Omega(d1+delta/6-o(1))$ queries.
arXiv Detail & Related papers (2023-06-21T19:48:58Z) - Memory-Constrained Algorithms for Convex Optimization via Recursive
Cutting-Planes [23.94542304111204]
First class of algorithms that provides a positive trade-off between gradient descent and cutting-plane methods in any regime with $epsilonleq 1/sqrt d$.
In the regime $epsilon leq d-Omega(d)$, our algorithm with $p=d$ achieves the information-theoretic optimal memory usage and improves the oracle-complexity of gradient descent.
arXiv Detail & Related papers (2023-06-16T17:00:51Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Quadratic Memory is Necessary for Optimal Query Complexity in Convex
Optimization: Center-of-Mass is Pareto-Optimal [23.94542304111204]
We show that quadratic memory is necessary to achieve the optimal oracle complexity for first-order convex optimization.
We prove that to minimize $1$-Lipschitz convex functions over the unit ball to $1/d4$ accuracy, any deterministic first-order algorithms using at most $d2-delta$ bits of memory must make $tildeOmega(d1+delta/3)$ queries.
arXiv Detail & Related papers (2023-02-09T22:37:27Z) - An Optimal Algorithm for Strongly Convex Min-min Optimization [79.11017157526815]
Existing optimal first-order methods require $mathcalO(sqrtmaxkappa_x,kappa_y log 1/epsilon)$ of computations of both $nabla_x f(x,y)$ and $nabla_y f(x,y)$.
We propose a new algorithm that only requires $mathcalO(sqrtkappa_x log 1/epsilon)$ of computations of $nabla_x f(x,
arXiv Detail & Related papers (2022-12-29T19:26:12Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.