Infrared and Visible Image Fusion via Interactive Compensatory Attention
Adversarial Learning
- URL: http://arxiv.org/abs/2203.15337v1
- Date: Tue, 29 Mar 2022 08:28:14 GMT
- Title: Infrared and Visible Image Fusion via Interactive Compensatory Attention
Adversarial Learning
- Authors: Zhishe Wang, Wenyu Shao, Yanlin Chen, Jiawei Xu, Xiaoqin Zhang
- Abstract summary: We propose a novel end-to-end mode based on generative adversarial training to achieve better fusion balance.
In particular, in the generator, we construct a multi-level encoder-decoder network with a triple path, and adopt infrared and visible paths to provide additional intensity and information gradient.
In addition, dual discriminators are designed to identify the similar distribution between fused result and source images, and the generator is optimized to produce a more balanced result.
- Score: 7.995162257955025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existing generative adversarial fusion methods generally concatenate
source images and extract local features through convolution operation, without
considering their global characteristics, which tends to produce an unbalanced
result and is biased towards the infrared image or visible image. Toward this
end, we propose a novel end-to-end mode based on generative adversarial
training to achieve better fusion balance, termed as \textit{interactive
compensatory attention fusion network} (ICAFusion). In particular, in the
generator, we construct a multi-level encoder-decoder network with a triple
path, and adopt infrared and visible paths to provide additional intensity and
gradient information. Moreover, we develop interactive and compensatory
attention modules to communicate their pathwise information, and model their
long-range dependencies to generate attention maps, which can more focus on
infrared target perception and visible detail characterization, and further
increase the representation power for feature extraction and feature
reconstruction. In addition, dual discriminators are designed to identify the
similar distribution between fused result and source images, and the generator
is optimized to produce a more balanced result. Extensive experiments
illustrate that our ICAFusion obtains superior fusion performance and better
generalization ability, which precedes other advanced methods in the subjective
visual description and objective metric evaluation. Our codes will be public at
\url{https://github.com/Zhishe-Wang/ICAFusion}
Related papers
- A Semantic-Aware and Multi-Guided Network for Infrared-Visible Image Fusion [41.34335755315773]
Multi-modality image fusion aims at fusing specific-modality and shared-modality information from two source images.
We propose a three-branch encoder-decoder architecture along with corresponding fusion layers as the fusion strategy.
Our method has obtained competitive results compared with state-of-the-art methods in visible/infrared image fusion and medical image fusion tasks.
arXiv Detail & Related papers (2024-06-11T09:32:40Z) - Fusion of Infrared and Visible Images based on Spatial-Channel
Attentional Mechanism [3.388001684915793]
We present AMFusionNet, an innovative approach to infrared and visible image fusion (IVIF)
By assimilating thermal details from infrared images with texture features from visible sources, our method produces images enriched with comprehensive information.
Our method outperforms state-of-the-art algorithms in terms of quality and quantity.
arXiv Detail & Related papers (2023-08-25T21:05:11Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
We propose a perception-aware fusion framework to promote segmentation robustness in adversarial scenes.
We show that our scheme substantially enhances the robustness, with gains of 15.3% mIOU, compared with advanced competitors.
arXiv Detail & Related papers (2023-08-08T01:55:44Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
This research focuses on the discovery and localization of hidden objects in the wild and serves unmanned systems.
Through empirical analysis, infrared and visible image fusion (IVIF) enables hard-to-find objects apparent.
multimodal salient object detection (SOD) accurately delineates the precise spatial location of objects within the picture.
arXiv Detail & Related papers (2023-05-17T06:48:35Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z) - Breaking Free from Fusion Rule: A Fully Semantic-driven Infrared and
Visible Image Fusion [51.22863068854784]
Infrared and visible image fusion plays a vital role in the field of computer vision.
Previous approaches make efforts to design various fusion rules in the loss functions.
We develop a semantic-level fusion network to sufficiently utilize the semantic guidance.
arXiv Detail & Related papers (2022-11-22T13:59:59Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion [72.8898811120795]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.
Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - TGFuse: An Infrared and Visible Image Fusion Approach Based on
Transformer and Generative Adversarial Network [15.541268697843037]
We propose an infrared and visible image fusion algorithm based on a lightweight transformer module and adversarial learning.
Inspired by the global interaction power, we use the transformer technique to learn the effective global fusion relations.
The experimental performance demonstrates the effectiveness of the proposed modules, with superior improvement against the state-of-the-art.
arXiv Detail & Related papers (2022-01-25T07:43:30Z) - A Dual-branch Network for Infrared and Visible Image Fusion [20.15854042473049]
We propose a new method based on dense blocks and GANs.
We directly insert the input image-visible light image in each layer of the entire network.
Our experiments show that the fused images obtained by our approach achieve good score based on multiple evaluation indicators.
arXiv Detail & Related papers (2021-01-24T04:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.