Invariance Learning based on Label Hierarchy
- URL: http://arxiv.org/abs/2203.15549v1
- Date: Tue, 29 Mar 2022 13:31:21 GMT
- Title: Invariance Learning based on Label Hierarchy
- Authors: Shoji Toyota, Kenji Fukumizu
- Abstract summary: Deep Neural Networks inherit spurious correlations embedded in training data and hence fail to predict desired labels on unseen domains.
Invariance Learning (IL) has been developed recently to overcome this shortcoming.
We propose a novel IL framework to overcome the requirement of training data in multiple domains.
- Score: 17.53032543377636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks inherit spurious correlations embedded in training data
and hence may fail to predict desired labels on unseen domains (or
environments), which have different distributions from the domain used in
training. Invariance Learning (IL) has been developed recently to overcome this
shortcoming; using training data in many domains, IL estimates such a predictor
that is invariant to a change of domain. However, the requirement of training
data in multiple domains is a strong restriction of IL, since it often needs
high annotation cost. We propose a novel IL framework to overcome this problem.
Assuming the availability of data from multiple domains for a higher level of
classification task, for which the labeling cost is low, we estimate an
invariant predictor for the target classification task with training data in a
single domain. Additionally, we propose two cross-validation methods for
selecting hyperparameters of invariance regularization to solve the issue of
hyperparameter selection, which has not been handled properly in existing IL
methods. The effectiveness of the proposed framework, including the
cross-validation, is demonstrated empirically, and the correctness of the
hyperparameter selection is proved under some conditions.
Related papers
- Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault
Diagnosis [7.88657961743755]
Unsupervised domain adaptation (UDA) deals with the scenario where labeled data are available in a source domain, and only unlabeled data are available in a target domain.
We propose a novel UDA method called Calibrated Adaptive Teacher (CAT), where we propose to calibrate the predictions of the teacher network throughout the self-training process.
arXiv Detail & Related papers (2023-12-05T15:19:29Z) - centroIDA: Cross-Domain Class Discrepancy Minimization Based on
Accumulative Class-Centroids for Imbalanced Domain Adaptation [17.97306640457707]
We propose a cross-domain class discrepancy minimization method based on accumulative class-centroids for IDA (centroIDA)
A series of experiments have proved that our method outperforms other SOTA methods on IDA problem, especially with the increasing degree of label shift.
arXiv Detail & Related papers (2023-08-21T10:35:32Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Certainty Volume Prediction for Unsupervised Domain Adaptation [35.984559137218504]
Unsupervised domain adaptation (UDA) deals with the problem of classifying unlabeled target domain data.
We propose a novel uncertainty-aware domain adaptation setup that models uncertainty as a multivariate Gaussian distribution in feature space.
We evaluate our proposed pipeline on challenging UDA datasets and achieve state-of-the-art results.
arXiv Detail & Related papers (2021-11-03T11:22:55Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples.
We propose a method to learn the threshold using source samples and to adapt it to the target domain.
Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target.
arXiv Detail & Related papers (2021-04-07T18:36:31Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Weak Adaptation Learning -- Addressing Cross-domain Data Insufficiency
with Weak Annotator [2.8672054847109134]
In some target problem domains, there are not many data samples available, which could hinder the learning process.
We propose a weak adaptation learning (WAL) approach that leverages unlabeled data from a similar source domain.
Our experiments demonstrate the effectiveness of our approach in learning an accurate classifier with limited labeled data in the target domain.
arXiv Detail & Related papers (2021-02-15T06:19:25Z) - Open-Set Hypothesis Transfer with Semantic Consistency [99.83813484934177]
We introduce a method that focuses on the semantic consistency under transformation of target data.
Our model first discovers confident predictions and performs classification with pseudo-labels.
As a result, unlabeled data can be classified into discriminative classes coincided with either source classes or unknown classes.
arXiv Detail & Related papers (2020-10-01T10:44:31Z) - Inductive Unsupervised Domain Adaptation for Few-Shot Classification via
Clustering [16.39667909141402]
Few-shot classification tends to struggle when it needs to adapt to diverse domains.
We introduce a framework, DaFeC, to improve Domain adaptation performance for Few-shot classification via Clustering.
Our approach outperforms previous work with absolute gains (in classification accuracy) of 4.95%, 9.55%, 3.99% and 11.62%, respectively.
arXiv Detail & Related papers (2020-06-23T08:17:48Z) - A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation [142.31610972922067]
This work addresses the unsupervised domain adaptation problem, especially in the case of class labels in the target domain being only a subset of those in the source domain.
We build on domain adversarial learning and propose a novel domain adaptation method BA$3$US with two new techniques termed Balanced Adversarial Alignment (BAA) and Adaptive Uncertainty Suppression (AUS)
Experimental results on multiple benchmarks demonstrate our BA$3$US surpasses state-of-the-arts for partial domain adaptation tasks.
arXiv Detail & Related papers (2020-03-05T11:37:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.