HardVis: Visual Analytics to Handle Instance Hardness Using Undersampling and Oversampling Techniques
- URL: http://arxiv.org/abs/2203.15753v4
- Date: Thu, 18 Apr 2024 16:37:02 GMT
- Title: HardVis: Visual Analytics to Handle Instance Hardness Using Undersampling and Oversampling Techniques
- Authors: Angelos Chatzimparmpas, Fernando V. Paulovich, Andreas Kerren,
- Abstract summary: HardVis is a visual analytics system designed to handle instance hardness mainly in imbalanced classification scenarios.
Users can explore subsets of data from different perspectives to decide all those parameters.
The efficacy and effectiveness of HardVis are demonstrated with a hypothetical usage scenario and a use case.
- Score: 48.82319198853359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the tremendous advances in machine learning (ML), training with imbalanced data still poses challenges in many real-world applications. Among a series of diverse techniques to solve this problem, sampling algorithms are regarded as an efficient solution. However, the problem is more fundamental, with many works emphasizing the importance of instance hardness. This issue refers to the significance of managing unsafe or potentially noisy instances that are more likely to be misclassified and serve as the root cause of poor classification performance. This paper introduces HardVis, a visual analytics system designed to handle instance hardness mainly in imbalanced classification scenarios. Our proposed system assists users in visually comparing different distributions of data types, selecting types of instances based on local characteristics that will later be affected by the active sampling method, and validating which suggestions from undersampling or oversampling techniques are beneficial for the ML model. Additionally, rather than uniformly undersampling/oversampling a specific class, we allow users to find and sample easy and difficult to classify training instances from all classes. Users can explore subsets of data from different perspectives to decide all those parameters, while HardVis keeps track of their steps and evaluates the model's predictive performance in a test set separately. The end result is a well-balanced data set that boosts the predictive power of the ML model. The efficacy and effectiveness of HardVis are demonstrated with a hypothetical usage scenario and a use case. Finally, we also look at how useful our system is based on feedback we received from ML experts.
Related papers
- Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Enhancing Vision-Language Few-Shot Adaptation with Negative Learning [11.545127156146368]
We propose a Simple yet effective Negative Learning approach, SimNL, to more efficiently exploit task-specific knowledge.
To this issue, we introduce a plug-and-play few-shot instance reweighting technique to mitigate noisy outliers.
Our extensive experimental results validate that the proposed SimNL outperforms existing state-of-the-art methods on both few-shot learning and domain generalization tasks.
arXiv Detail & Related papers (2024-03-19T17:59:39Z) - Dynamic Policy-Driven Adaptive Multi-Instance Learning for Whole Slide
Image Classification [26.896926631411652]
Multi-Instance Learning (MIL) has shown impressive performance for histopathology whole slide image (WSI) analysis using bags or pseudo-bags.
Existing MIL-based technologies at least suffer from one or more of the following problems: 1) requiring high storage and intensive pre-processing for numerous instances (sampling); 2) potential over-fitting with limited knowledge to predict bag labels (feature representation); 3) pseudo-bag counts and prior biases affect model robustness and generalizability (decision-making)
arXiv Detail & Related papers (2024-03-09T04:43:24Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Split-PU: Hardness-aware Training Strategy for Positive-Unlabeled
Learning [42.26185670834855]
Positive-Unlabeled (PU) learning aims to learn a model with rare positive samples and abundant unlabeled samples.
This paper focuses on improving the commonly-used nnPU with a novel training pipeline.
arXiv Detail & Related papers (2022-11-30T05:48:31Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Minority Class Oversampling for Tabular Data with Deep Generative Models [4.976007156860967]
We study the ability of deep generative models to provide realistic samples that improve performance on imbalanced classification tasks via oversampling.
Our experiments show that the way the method of sampling does not affect quality, but runtime varies widely.
We also observe that the improvements in terms of performance metric, while shown to be significant, often are minor in absolute terms.
arXiv Detail & Related papers (2020-05-07T21:35:57Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.