On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation
- URL: http://arxiv.org/abs/2203.15865v1
- Date: Tue, 29 Mar 2022 19:11:54 GMT
- Title: On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation
- Authors: Soumava Kumar Roy, Leonardo Citraro, Sina Honari and Pascal Fua
- Abstract summary: Supervised approaches to 3D pose estimation from single images are remarkably effective when labeled data is abundant.
Much of the recent attention has shifted towards semi and (or) weakly supervised learning.
We propose to impose multi-view geometrical constraints by means of a differentiable triangulation and to use it as form of self-supervision during training when no labels are available.
- Score: 57.766049538913926
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Supervised approaches to 3D pose estimation from single images are remarkably
effective when labeled data is abundant. Therefore, much of the recent
attention has shifted towards semi and (or) weakly supervised learning.
Generating an effective form of supervision with little annotations still poses
major challenges in crowded scenes. However, since it is easy to observe a
scene from multiple cameras, we propose to impose multi-view geometrical
constraints by means of a differentiable triangulation and to use it as form of
self-supervision during training when no labels are available. We therefore
train a 2D pose estimator in such a way that its predictions correspond to the
re-projection of the triangulated 3D one and train an auxiliary network on them
to produce the final 3D poses. We complement the triangulation with a weighting
mechanism that nullify the impact of noisy predictions caused by self-occlusion
or occlusion from other subjects. Our experimental results on Human3.6M and
MPI-INF-3DHP substantiate the significance of our weighting strategy where we
obtain state-of-the-art results in the semi and weakly supervised learning
setup. We also contribute a new multi-player sports dataset that features
occlusion, and show the effectiveness of our algorithm over baseline
triangulation methods.
Related papers
- Weakly Supervised 3D Multi-person Pose Estimation for Large-scale Scenes
based on Monocular Camera and Single LiDAR [41.39277657279448]
We propose a monocular camera and single LiDAR-based method for 3D multi-person pose estimation in large-scale scenes.
Specifically, we design an effective fusion strategy to take advantage of multi-modal input data, including images and point cloud.
Our method exploits the inherent geometry constraints of point cloud for self-supervision and utilizes 2D keypoints on images for weak supervision.
arXiv Detail & Related papers (2022-11-30T12:50:40Z) - PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and
Hallucination under Self-supervision [102.48681650013698]
Existing self-supervised 3D human pose estimation schemes have largely relied on weak supervisions to guide the learning.
We propose a novel self-supervised approach that allows us to explicitly generate 2D-3D pose pairs for augmenting supervision.
This is made possible via introducing a reinforcement-learning-based imitator, which is learned jointly with a pose estimator alongside a pose hallucinator.
arXiv Detail & Related papers (2022-03-29T14:45:53Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Multi-Scale Networks for 3D Human Pose Estimation with Inference Stage
Optimization [33.02708860641971]
Estimating 3D human poses from a monocular video is still a challenging task.
Many existing methods drop when the target person is cluded by other objects, or the motion is too fast/slow relative to the scale and speed of the training data.
We introduce atemporal-temporal network for robust 3D human pose estimation.
arXiv Detail & Related papers (2020-10-13T15:24:28Z) - Unsupervised Cross-Modal Alignment for Multi-Person 3D Pose Estimation [52.94078950641959]
We present a deployment friendly, fast bottom-up framework for multi-person 3D human pose estimation.
We adopt a novel neural representation of multi-person 3D pose which unifies the position of person instances with their corresponding 3D pose representation.
We propose a practical deployment paradigm where paired 2D or 3D pose annotations are unavailable.
arXiv Detail & Related papers (2020-08-04T07:54:25Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z) - Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the
Wild [101.70320427145388]
We propose a weakly-supervised approach that does not require 3D annotations and learns to estimate 3D poses from unlabeled multi-view data.
We evaluate our proposed approach on two large scale datasets.
arXiv Detail & Related papers (2020-03-17T08:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.