Recommendation of Compatible Outfits Conditioned on Style
- URL: http://arxiv.org/abs/2203.16161v1
- Date: Wed, 30 Mar 2022 09:23:32 GMT
- Title: Recommendation of Compatible Outfits Conditioned on Style
- Authors: Debopriyo Banerjee, Lucky Dhakad, Harsh Maheshwari, Muthusamy
Chelliah, Niloy Ganguly, Arnab Bhattacharya
- Abstract summary: This work aims to generate outfits conditional on styles or themes as one would dress in real life.
We use a novel style encoder network that renders outfit styles in a smooth latent space.
- Score: 22.03522251199042
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommendation in the fashion domain has seen a recent surge in research in
various areas, for example, shop-the-look, context-aware outfit creation,
personalizing outfit creation, etc. The majority of state of the art approaches
in the domain of outfit recommendation pursue to improve compatibility among
items so as to produce high quality outfits. Some recent works have realized
that style is an important factor in fashion and have incorporated it in
compatibility learning and outfit generation. These methods often depend on the
availability of fine-grained product categories or the presence of rich item
attributes (e.g., long-skirt, mini-skirt, etc.). In this work, we aim to
generate outfits conditional on styles or themes as one would dress in real
life, operating under the practical assumption that each item is mapped to a
high level category as driven by the taxonomy of an online portal, like
outdoor, formal etc and an image. We use a novel style encoder network that
renders outfit styles in a smooth latent space. We present an extensive
analysis of different aspects of our method and demonstrate its superiority
over existing state of the art baselines through rigorous experiments.
Related papers
- Lost Your Style? Navigating with Semantic-Level Approach for
Text-to-Outfit Retrieval [2.07180164747172]
We introduce a groundbreaking approach to fashion recommendations: text-to-outfit retrieval task that generates a complete outfit set based solely on textual descriptions.
Our model is devised at three semantic levels-item, style, and outfit-where each level progressively aggregates data to form a coherent outfit recommendation.
Using the Maryland Polyvore and Polyvore Outfit datasets, our approach significantly outperformed state-of-the-art models in text-video retrieval tasks.
arXiv Detail & Related papers (2023-11-03T07:23:21Z) - Learning Fashion Compatibility from In-the-wild Images [6.591937706757015]
We propose to learn representations for compatibility prediction from in-the-wild street fashion images through self-supervised learning.
Our pretext task is formulated such that the representations of different items worn by the same person are closer compared to those worn by other people.
We conduct experiments on two popular fashion compatibility benchmarks - Polyvore and Polyvore-Disjoint outfits.
arXiv Detail & Related papers (2022-06-13T09:05:25Z) - An Application to Generate Style Guided Compatible Outfit [16.63265212958939]
We aim to generate outfits guided by styles or themes using a novel style encoder network.
We present an extensive analysis of different aspects of our method through various experiments.
arXiv Detail & Related papers (2022-05-02T05:45:05Z) - Weakly Supervised High-Fidelity Clothing Model Generation [67.32235668920192]
We propose a cheap yet scalable weakly-supervised method called Deep Generative Projection (DGP) to address this specific scenario.
We show that projecting the rough alignment of clothing and body onto the StyleGAN space can yield photo-realistic wearing results.
arXiv Detail & Related papers (2021-12-14T07:15:15Z) - Arbitrary Virtual Try-On Network: Characteristics Preservation and
Trade-off between Body and Clothing [85.74977256940855]
We propose an Arbitrary Virtual Try-On Network (AVTON) for all-type clothes.
AVTON can synthesize realistic try-on images by preserving and trading off characteristics of the target clothes and the reference person.
Our approach can achieve better performance compared with the state-of-the-art virtual try-on methods.
arXiv Detail & Related papers (2021-11-24T08:59:56Z) - Semi-Supervised Visual Representation Learning for Fashion Compatibility [17.893627646979038]
We propose a semi-supervised learning approach to create pseudo-positive and pseudo-negative outfits on the fly during training.
For each labeled outfit in a training batch, we obtain a pseudo-outfit by matching each item in the labeled outfit with unlabeled items.
We conduct extensive experiments on Polyvore, Polyvore-D and our newly created large-scale Fashion Outfits datasets.
arXiv Detail & Related papers (2021-09-16T15:35:38Z) - SMPLicit: Topology-aware Generative Model for Clothed People [65.84665248796615]
We introduce SMPLicit, a novel generative model to jointly represent body pose, shape and clothing geometry.
In the experimental section, we demonstrate SMPLicit can be readily used for fitting 3D scans and for 3D reconstruction in images of dressed people.
arXiv Detail & Related papers (2021-03-11T18:57:03Z) - Addressing the Cold-Start Problem in Outfit Recommendation Using Visual
Preference Modelling [51.147871738838305]
This paper attempts to address the cold-start problem for new users by leveraging a novel visual preference modelling approach.
We demonstrate the use of our approach with feature-weighted clustering to personalise occasion-oriented outfit recommendation.
arXiv Detail & Related papers (2020-08-04T10:07:09Z) - Personalized Fashion Recommendation from Personal Social Media Data: An
Item-to-Set Metric Learning Approach [71.63618051547144]
We study the problem of personalized fashion recommendation from social media data.
We present an item-to-set metric learning framework that learns to compute the similarity between a set of historical fashion items of a user to a new fashion item.
To validate the effectiveness of our approach, we collect a real-world social media dataset.
arXiv Detail & Related papers (2020-05-25T23:24:24Z) - Fashion Recommendation and Compatibility Prediction Using Relational
Network [18.13692056232815]
We develop a Relation Network (RN) to develop new compatibility learning models.
FashionRN learns the compatibility of an entire outfit, with an arbitrary number of items, in an arbitrary order.
We evaluate our model using a large dataset of 49,740 outfits that we collected from Polyvore website.
arXiv Detail & Related papers (2020-05-13T21:00:54Z) - Learning Diverse Fashion Collocation by Neural Graph Filtering [78.9188246136867]
We propose a novel fashion collocation framework, Neural Graph Filtering, that models a flexible set of fashion items via a graph neural network.
By applying symmetric operations on the edge vectors, this framework allows varying numbers of inputs/outputs and is invariant to their ordering.
We evaluate the proposed approach on three popular benchmarks, the Polyvore dataset, the Polyvore-D dataset, and our reorganized Amazon Fashion dataset.
arXiv Detail & Related papers (2020-03-11T16:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.