TubeDETR: Spatio-Temporal Video Grounding with Transformers
- URL: http://arxiv.org/abs/2203.16434v1
- Date: Wed, 30 Mar 2022 16:31:49 GMT
- Title: TubeDETR: Spatio-Temporal Video Grounding with Transformers
- Authors: Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid
- Abstract summary: We consider the problem of encoder localizing a-temporal tube in a video corresponding to a given text query.
To address this task, we propose TubeDETR, a transformer- architecture inspired by the recent success of such models for text-conditioned object detection.
- Score: 89.71617065426146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of localizing a spatio-temporal tube in a video
corresponding to a given text query. This is a challenging task that requires
the joint and efficient modeling of temporal, spatial and multi-modal
interactions. To address this task, we propose TubeDETR, a transformer-based
architecture inspired by the recent success of such models for text-conditioned
object detection. Our model notably includes: (i) an efficient video and text
encoder that models spatial multi-modal interactions over sparsely sampled
frames and (ii) a space-time decoder that jointly performs spatio-temporal
localization. We demonstrate the advantage of our proposed components through
an extensive ablation study. We also evaluate our full approach on the
spatio-temporal video grounding task and demonstrate improvements over the
state of the art on the challenging VidSTG and HC-STVG benchmarks. Code and
trained models are publicly available at
https://antoyang.github.io/tubedetr.html.
Related papers
- MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
We present four key contributions to address the challenges of video processing.
First, we introduce the 3D Inverted Vector-Quantization Variencoenco Autocoder.
Second, we present MotionAura, a text-to-video generation framework.
Third, we propose a spectral transformer-based denoising network.
Fourth, we introduce a downstream task of Sketch Guided Videopainting.
arXiv Detail & Related papers (2024-10-10T07:07:56Z) - xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1 is a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions.
VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens.
DiT model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios.
arXiv Detail & Related papers (2024-08-22T17:55:22Z) - Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation [55.36617538438858]
We propose a novel approach that strengthens the interaction between spatial and temporal perceptions.
We curate a large-scale and open-source video dataset called HD-VG-130M.
arXiv Detail & Related papers (2023-05-18T11:06:15Z) - You Can Ground Earlier than See: An Effective and Efficient Pipeline for
Temporal Sentence Grounding in Compressed Videos [56.676761067861236]
Given an untrimmed video, temporal sentence grounding aims to locate a target moment semantically according to a sentence query.
Previous respectable works have made decent success, but they only focus on high-level visual features extracted from decoded frames.
We propose a new setting, compressed-domain TSG, which directly utilizes compressed videos rather than fully-decompressed frames as the visual input.
arXiv Detail & Related papers (2023-03-14T12:53:27Z) - Embracing Consistency: A One-Stage Approach for Spatio-Temporal Video
Grounding [35.73830796500975]
We present an end-to-end one-stage framework, termed Spatio-Temporal Consistency-Aware Transformer (STCAT)
To generate the above template under sufficient video- perception, an encoder-decoder architecture is proposed for effective global context modeling.
Our method outperforms previous state-of-the-arts with clear margins on two challenging video benchmarks.
arXiv Detail & Related papers (2022-09-27T11:13:04Z) - VDTR: Video Deblurring with Transformer [24.20183395758706]
Videoblurring is still an unsolved problem due to the challenging-temporal modeling process.
This paper presents VDTR, an effective Transformer-based model that makes the first attempt to adapt for Transformer video dering.
arXiv Detail & Related papers (2022-04-17T14:22:14Z) - StyleVideoGAN: A Temporal Generative Model using a Pretrained StyleGAN [70.31913835035206]
We present a novel approach to the video synthesis problem that helps to greatly improve visual quality.
We make use of a pre-trained StyleGAN network, the latent space of which allows control over the appearance of the objects it was trained for.
Our temporal architecture is then trained not on sequences of RGB frames, but on sequences of StyleGAN latent codes.
arXiv Detail & Related papers (2021-07-15T09:58:15Z) - Where Does It Exist: Spatio-Temporal Video Grounding for Multi-Form
Sentences [107.0776836117313]
Given an un-trimmed video and a declarative/interrogative sentence, STVG aims to localize the-temporal tube of the object queried.
Existing methods cannot tackle the STVG task due to the ineffective tube pre-generation and the lack of novel object relationship modeling.
We present a declarative-Temporal Graph Reasoning Network (STGRN) for this task.
arXiv Detail & Related papers (2020-01-19T19:53:22Z) - Spatio-Temporal Ranked-Attention Networks for Video Captioning [34.05025890230047]
We propose a model that combines spatial and temporal attention to videos in two different orders.
We provide experiments on two benchmark datasets: MSVD and MSR-VTT.
Our results demonstrate the synergy between the ST and TS modules, outperforming recent state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T01:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.