A Reinforcement Learning Approach to Sensing Design in
Resource-Constrained Wireless Networked Control Systems
- URL: http://arxiv.org/abs/2204.00703v5
- Date: Wed, 10 Jan 2024 17:50:04 GMT
- Title: A Reinforcement Learning Approach to Sensing Design in
Resource-Constrained Wireless Networked Control Systems
- Authors: Luca Ballotta, Giovanni Peserico, Francesco Zanini
- Abstract summary: We consider a wireless network of smart sensors (agents) that monitor a dynamical process and send measurements to a base station.
Smart sensors are equipped with both sensing and computation, and can either send raw measurements or process them prior to transmission.
We propose a Reinforcement Learning approach to learn an efficient policy that dynamically decides when measurements are to be processed at each sensor.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider a wireless network of smart sensors (agents) that
monitor a dynamical process and send measurements to a base station that
performs global monitoring and decision-making. Smart sensors are equipped with
both sensing and computation, and can either send raw measurements or process
them prior to transmission. Constrained agent resources raise a fundamental
latency-accuracy trade-off. On the one hand, raw measurements are inaccurate
but fast to produce. On the other hand, data processing on resource-constrained
platforms generates accurate measurements at the cost of non-negligible
computation latency. Further, if processed data are also compressed, latency
caused by wireless communication might be higher for raw measurements. Hence,
it is challenging to decide when and where sensors in the network should
transmit raw measurements or leverage time-consuming local processing. To
tackle this design problem, we propose a Reinforcement Learning approach to
learn an efficient policy that dynamically decides when measurements are to be
processed at each sensor. Effectiveness of our proposed approach is validated
through a numerical simulation with case study on smart sensing motivated by
the Internet of Drones.
Related papers
- A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
We propose a novel sensing module to equip sensing frameworks with intelligent data transmission capabilities.
We integrate a highly efficient machine learning model placed near the sensor.
This model provides prompt feedback for the sensing system to transmit only valuable data while discarding irrelevant information.
arXiv Detail & Related papers (2024-02-03T05:41:39Z) - Sensor Placement for Learning in Flow Networks [6.680930089714339]
This paper investigates the sensor placement problem for networks.
We first formalize the problem under a flow conservation assumption and show that it is NP-hard to place a fixed set of sensors optimally.
Next, we propose an efficient and adaptive greedy for sensor placement that scales to large networks.
arXiv Detail & Related papers (2023-12-12T01:08:08Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Intelligent Communication Planning for Constrained Environmental IoT
Sensing with Reinforcement Learning [19.715387333728152]
Internet of Things (IoT) devices are often power-constrained and utilize wireless communication schemes with limited bandwidth.
We formulate the communication planning problem of IoT sensors that track the state of the environment.
We propose a multi-agent reinforcement learning (MARL) method to find the optimal communication policies for each sensor.
arXiv Detail & Related papers (2023-08-19T22:59:09Z) - To Compute or not to Compute? Adaptive Smart Sensing in
Resource-Constrained Edge Computing [1.7361161778148904]
We consider a network of smart sensors for an edge computing application that sample a time-varying signal and send updates to a base station for remote global monitoring.
Sensors are equipped with sensing and compute, and can either send raw data or process them on-board before transmission.
We propose an estimation-theoretic optimization framework that embeds both computation and communication latency.
arXiv Detail & Related papers (2022-09-05T23:46:42Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - An adaptive cognitive sensor node for ECG monitoring in the Internet of
Medical Things [0.7646713951724011]
The Internet of Medical Things (IoMT) paradigm is becoming mainstream in multiple clinical trials and healthcare procedures.
In this work, we explore the implementation of cognitive data analysis algorithm on resource-constrained computing platforms.
We have assessed our approach on a use-case using a convolutional neural network to classify electrocardiogram traces.
arXiv Detail & Related papers (2021-06-11T16:49:10Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
This paper investigates the problem of providing ultra-reliable and energy-efficient virtual reality (VR) experiences for wireless mobile users.
To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users, a coordinated multipoint (CoMP) transmission technique and millimeter wave (mmWave) communications are exploited.
arXiv Detail & Related papers (2021-06-03T08:35:10Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.