Con$^{2}$DA: Simplifying Semi-supervised Domain Adaptation by Learning
Consistent and Contrastive Feature Representations
- URL: http://arxiv.org/abs/2204.01558v2
- Date: Fri, 11 Aug 2023 09:20:55 GMT
- Title: Con$^{2}$DA: Simplifying Semi-supervised Domain Adaptation by Learning
Consistent and Contrastive Feature Representations
- Authors: Manuel P\'erez-Carrasco and Pavlos Protopapas and Guillermo
Cabrera-Vives
- Abstract summary: Con$2$DA is a framework that extends recent advances in semi-supervised learning to the semi-supervised domain adaptation problem.
Our framework generates pairs of associated samples by performing data transformations to a given input.
We use different loss functions to enforce consistency between the feature representations of associated data pairs of samples.
- Score: 1.2891210250935146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present Con$^{2}$DA, a simple framework that extends recent
advances in semi-supervised learning to the semi-supervised domain adaptation
(SSDA) problem. Our framework generates pairs of associated samples by
performing stochastic data transformations to a given input. Associated data
pairs are mapped to a feature representation space using a feature extractor.
We use different loss functions to enforce consistency between the feature
representations of associated data pairs of samples. We show that these learned
representations are useful to deal with differences in data distributions in
the domain adaptation problem. We performed experiments to study the main
components of our model and we show that (i) learning of the consistent and
contrastive feature representations is crucial to extract good discriminative
features across different domains, and ii) our model benefits from the use of
strong augmentation policies. With these findings, our method achieves
state-of-the-art performances in three benchmark datasets for SSDA.
Related papers
- First-Order Manifold Data Augmentation for Regression Learning [4.910937238451485]
We introduce FOMA: a new data-driven domain-independent data augmentation method.
We evaluate FOMA on in-distribution generalization and out-of-distribution benchmarks, and we show that it improves the generalization of several neural architectures.
arXiv Detail & Related papers (2024-06-16T12:35:05Z) - Semantic Positive Pairs for Enhancing Visual Representation Learning of Instance Discrimination methods [4.680881326162484]
Self-supervised learning algorithms (SSL) based on instance discrimination have shown promising results.
We propose an approach to identify those images with similar semantic content and treat them as positive instances.
We run experiments on three benchmark datasets: ImageNet, STL-10 and CIFAR-10 with different instance discrimination SSL approaches.
arXiv Detail & Related papers (2023-06-28T11:47:08Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised Domain
Adaptation [20.589323508870592]
Semi-supervised domain adaptation (SSDA) adapts a learner to a new domain by effectively utilizing source domain data and a few labeled target samples.
We show that the proposed model significantly outperforms SOTA methods in terms of effectiveness and generalisability on SSDA datasets.
arXiv Detail & Related papers (2023-03-30T16:48:28Z) - Synthetic-to-Real Domain Generalized Semantic Segmentation for 3D Indoor
Point Clouds [69.64240235315864]
This paper introduces the synthetic-to-real domain generalization setting to this task.
The domain gap between synthetic and real-world point cloud data mainly lies in the different layouts and point patterns.
Experiments on the synthetic-to-real benchmark demonstrate that both CINMix and multi-prototypes can narrow the distribution gap.
arXiv Detail & Related papers (2022-12-09T05:07:43Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Robust Representation Learning via Perceptual Similarity Metrics [18.842322467828502]
Contrastive Input Morphing (CIM) is a representation learning framework that learns input-space transformations of the data.
We show that CIM is complementary to other mutual information-based representation learning techniques.
arXiv Detail & Related papers (2021-06-11T21:45:44Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.