DAD: Data-free Adversarial Defense at Test Time
- URL: http://arxiv.org/abs/2204.01568v1
- Date: Mon, 4 Apr 2022 15:16:13 GMT
- Title: DAD: Data-free Adversarial Defense at Test Time
- Authors: Gaurav Kumar Nayak, Ruchit Rawal, Anirban Chakraborty
- Abstract summary: Deep models are highly susceptible to adversarial attacks.
Privacy has become an important concern, restricting access to only trained models but not the training data.
We propose a completely novel problem of 'test-time adversarial defense in absence of training data and even their statistics'
- Score: 21.741026088202126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep models are highly susceptible to adversarial attacks. Such attacks are
carefully crafted imperceptible noises that can fool the network and can cause
severe consequences when deployed. To encounter them, the model requires
training data for adversarial training or explicit regularization-based
techniques. However, privacy has become an important concern, restricting
access to only trained models but not the training data (e.g. biometric data).
Also, data curation is expensive and companies may have proprietary rights over
it. To handle such situations, we propose a completely novel problem of
'test-time adversarial defense in absence of training data and even their
statistics'. We solve it in two stages: a) detection and b) correction of
adversarial samples. Our adversarial sample detection framework is initially
trained on arbitrary data and is subsequently adapted to the unlabelled test
data through unsupervised domain adaptation. We further correct the predictions
on detected adversarial samples by transforming them in Fourier domain and
obtaining their low frequency component at our proposed suitable radius for
model prediction. We demonstrate the efficacy of our proposed technique via
extensive experiments against several adversarial attacks and for different
model architectures and datasets. For a non-robust Resnet-18 model pre-trained
on CIFAR-10, our detection method correctly identifies 91.42% adversaries.
Also, we significantly improve the adversarial accuracy from 0% to 37.37% with
a minimal drop of 0.02% in clean accuracy on state-of-the-art 'Auto Attack'
without having to retrain the model.
Related papers
- Mitigating Data Injection Attacks on Federated Learning [20.24380409762923]
Federated learning is a technique that allows multiple entities to collaboratively train models using their data.
Despite its advantages, federated learning can be susceptible to false data injection attacks.
We propose a novel technique to detect and mitigate data injection attacks on federated learning systems.
arXiv Detail & Related papers (2023-12-04T18:26:31Z) - DAD++: Improved Data-free Test Time Adversarial Defense [12.606555446261668]
We propose a test time Data-free Adversarial Defense (DAD) containing detection and correction frameworks.
We conduct a wide range of experiments and ablations on several datasets and network architectures to show the efficacy of our proposed approach.
Our DAD++ gives an impressive performance against various adversarial attacks with a minimal drop in clean accuracy.
arXiv Detail & Related papers (2023-09-10T20:39:53Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
We consider instance-wise unlearning, of which the goal is to delete information on a set of instances from a pre-trained model.
We propose two methods that reduce forgetting on the remaining data: 1) utilizing adversarial examples to overcome forgetting at the representation-level and 2) leveraging weight importance metrics to pinpoint network parameters guilty of propagating unwanted information.
arXiv Detail & Related papers (2023-01-27T07:53:50Z) - Efficient Adversarial Training With Data Pruning [26.842714298874192]
We show that data pruning leads to improvements in convergence and reliability of adversarial training.
In some settings data pruning brings benefits from both worlds-it both improves adversarial accuracy and training time.
arXiv Detail & Related papers (2022-07-01T23:54:46Z) - One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks [28.502489028888608]
Unlearnable examples (ULEs) aim to protect data from unauthorized usage for training DNNs.
In adversarial training, the unlearnability of error-minimizing noise will severely degrade.
We propose a novel model-free method, named emphOne-Pixel Shortcut, which only perturbs a single pixel of each image and makes the dataset unlearnable.
arXiv Detail & Related papers (2022-05-24T15:17:52Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
We show that an adversary who can poison a training dataset can cause models trained on this dataset to leak private details belonging to other parties.
Our attacks are effective across membership inference, attribute inference, and data extraction.
Our results cast doubts on the relevance of cryptographic privacy guarantees in multiparty protocols for machine learning.
arXiv Detail & Related papers (2022-03-31T18:06:28Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN) models have vulnerabilities related to security concerns.
Data poisoning-enabled perturbation attacks are complex adversarial ones that inject false data into models.
We propose an attack-agnostic-based defense method for mitigating their influence.
arXiv Detail & Related papers (2020-12-08T21:25:44Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.