A Survey on Graph Representation Learning Methods
- URL: http://arxiv.org/abs/2204.01855v1
- Date: Mon, 4 Apr 2022 21:18:48 GMT
- Title: A Survey on Graph Representation Learning Methods
- Authors: Shima Khoshraftar, Aijun An
- Abstract summary: The goal of graph representation learning is to generate graph representation vectors that capture the structure and features of large graphs accurately.
Two of the most prevalent categories of graph representation learning are graph embedding methods without using graph neural nets (GNN) and graph neural nets (GNN) based methods.
- Score: 7.081604594416337
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Graphs representation learning has been a very active research area in recent
years. The goal of graph representation learning is to generate graph
representation vectors that capture the structure and features of large graphs
accurately. This is especially important because the quality of the graph
representation vectors will affect the performance of these vectors in
downstream tasks such as node classification, link prediction and anomaly
detection. Many techniques are proposed for generating effective graph
representation vectors. Two of the most prevalent categories of graph
representation learning are graph embedding methods without using graph neural
nets (GNN), which we denote as non-GNN based graph embedding methods, and graph
neural nets (GNN) based methods. Non-GNN graph embedding methods are based on
techniques such as random walks, temporal point processes and neural network
learning methods. GNN-based methods, on the other hand, are the application of
deep learning on graph data. In this survey, we provide an overview of these
two categories and cover the current state-of-the-art methods for both static
and dynamic graphs. Finally, we explore some open and ongoing research
directions for future work.
Related papers
- Knowledge Probing for Graph Representation Learning [12.960185655357495]
We propose a novel graph probing framework (GraphProbe) to investigate and interpret whether the family of graph learning methods has encoded different levels of knowledge in graph representation learning.
Based on the intrinsic properties of graphs, we design three probes to systematically investigate the graph representation learning process from different perspectives.
We construct a thorough evaluation benchmark with nine representative graph learning methods from random walk based approaches, basic graph neural networks and self-supervised graph methods, and probe them on six benchmark datasets for node classification, link prediction and graph classification.
arXiv Detail & Related papers (2024-08-07T16:27:45Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph-level Neural Networks: Current Progress and Future Directions [61.08696673768116]
Graph-level Neural Networks (GLNNs, deep learning-based graph-level learning methods) have been attractive due to their superiority in modeling high-dimensional data.
We propose a systematic taxonomy covering GLNNs upon deep neural networks, graph neural networks, and graph pooling.
arXiv Detail & Related papers (2022-05-31T06:16:55Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Learning Graph Representations [0.0]
Graph Neural Networks (GNNs) are efficient ways to get insight into large dynamic graph datasets.
In this paper, we discuss the graph convolutional neural networks graph autoencoders and Social-temporal graph neural networks.
arXiv Detail & Related papers (2021-02-03T12:07:55Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Lifelong Graph Learning [6.282881904019272]
We bridge graph learning and lifelong learning by converting a continual graph learning problem to a regular graph learning problem.
We show that feature graph networks (FGN) achieve superior performance in two applications, i.e., lifelong human action recognition with wearable devices and feature matching.
arXiv Detail & Related papers (2020-09-01T18:21:34Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.