Learning to Reduce Information Bottleneck for Object Detection in Aerial
Images
- URL: http://arxiv.org/abs/2204.02033v1
- Date: Tue, 5 Apr 2022 07:46:37 GMT
- Title: Learning to Reduce Information Bottleneck for Object Detection in Aerial
Images
- Authors: Yuchen Shen and Zhihao Song and Liyong Fu and Xuesong Jiang and
Qiaolin Ye
- Abstract summary: We first analyse the importance of the neck network in object detection frameworks from the theory of information bottleneck.
We propose a global semantic network, which acts as a bridge from the backbone to the head network in a bidirectional global convolution manner.
Compared to the existing neck networks, our method has advantages of capturing rich detailed information and less computational costs.
- Score: 5.4547979989237225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection in aerial images is a fundamental research topic in the
domain of geoscience and remote sensing. However, advanced progresses on this
topic are mainly focused on the designment of backbone networks or header
networks, but surprisingly ignored the neck ones. In this letter, we first
analyse the importance of the neck network in object detection frameworks from
the theory of information bottleneck. Then, to alleviate the information loss
problem in the current neck network, we propose a global semantic network,
which acts as a bridge from the backbone to the head network in a bidirectional
global convolution manner. Compared to the existing neck networks, our method
has advantages of capturing rich detailed information and less computational
costs. Moreover, we further propose a fusion refinement module, which is used
for feature fusion with rich details from different scales. To demonstrate the
effectiveness and efficiency of our method, experiments are carried out on two
challenging datasets (i.e., DOTA and HRSC2016). Results in terms of accuracy
and computational complexity both can verify the superiority of our method.
Related papers
- Single-Point Supervised High-Resolution Dynamic Network for Infrared Small Target Detection [7.0456782736205685]
We propose a single-point supervised high-resolution dynamic network (SSHD-Net)
It achieves state-of-the-art (SOTA) detection performance using only single-point supervision.
Experiments on the publicly available datasets NUDT-SIRST and IRSTD-1k demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-08-04T09:44:47Z) - PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
We present an advanced study on more challenging high-resolution salient object detection (HRSOD) from both dataset and network framework perspectives.
To compensate for the lack of HRSOD dataset, we thoughtfully collect a large-scale high resolution salient object detection dataset, called UHRSD.
All the images are finely annotated in pixel-level, far exceeding previous low-resolution SOD datasets.
arXiv Detail & Related papers (2024-08-02T09:31:21Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
Spotting camouflaged objects that are visually assimilated into the background is tricky for object detection algorithms.
We aim to extract the high-resolution texture details to avoid the detail degradation that causes blurred vision in edges and boundaries.
We introduce a novel HitNet to refine the low-resolution representations by high-resolution features in an iterative feedback manner.
arXiv Detail & Related papers (2022-03-22T11:20:21Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Lightweight Convolutional Neural Network with Gaussian-based Grasping
Representation for Robotic Grasping Detection [4.683939045230724]
Current object detectors are difficult to strike a balance between high accuracy and fast inference speed.
We present an efficient and robust fully convolutional neural network model to perform robotic grasping pose estimation.
The network is an order of magnitude smaller than other excellent algorithms.
arXiv Detail & Related papers (2021-01-25T16:36:53Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.